摘要
为了摆脱智能灌溉中电磁阀依赖的有线电源,研究设计了基于超微型水轮发电机供电的智能电磁阀系统,实现了无线“电源网络”。采用超微型水轮发电机与太阳能发电板双供电系统为可充锂电池充电,并使用流体力学、电学等物理、数学方法对其进行发电效率计算,选用额定容量为6800 mA·h的可充锂电池为YCL11型双稳态脉冲型电磁阀和LTE-Luat通信控制模块供电。设计安装了一套测试装置,计算测试通信控制模块与电磁阀的耗电量以及发电机的充电效率。结果表明超微型水轮发电机每小时充电效率为1.23~2.45,即在40.8~81.6 h之间可充满一次额定容量为6800 mA·h的锂电池,而太阳能充电板在正常工作情况下5.44 h左右便可充满电池,充电效率每小时18.38。在没有超微型水轮发电机和太阳能充电板的情况下,一个充满电的额定容量为6800 mA·h的锂电池可以在GPRS、WCDMA和LTE 3种标准下保证至少89、129和67 d的使用,双发电机充电效率达到每天1.12(1/89)、0.77(1/129)和1.49(1/67)即可满足整个系统的用电需求。该系统不论是超微型水轮发电机还是太阳能充电板的充电效率都超过了所要求的充电效率,可完全保证系统持续运转,符合系统设计要求。该系统的研发成功将为智能灌溉节省大量的电力基础设施建设成本,也为中国偏远地区实现智能灌溉提供一条新的思路。
In order to get rid of the wired power supply,the intelligent solenoid valve system based on the power supply of ultra-micro hydro-generator was studied and designed,and the“wireless power+network”was realized.The dual power supply system of ultra-micro hydro-generator and solar panel was used to charge the rechargeable lithium battery,and the physical and mathematical methods such as hydrodynamics and electricity were used to calculate the power generation efficiency.The rechargeable lithium battery with the rated capacity of 6800 mA·h was selected to supply power for YCL11 type bistable pulse solenoid valve and LTE-Luat communication control module.A set of testing device was designed and installed.The result shows that the hourly charging efficiency of the ultra-micro Hydro-generator was 1.23%~2.45%,in other words,the lithium battery with a rated capacity of 6800 mA·h can be charged once between 40.8~81.6 h,while the solar charging plate can be charged about 5.44 h under normal working conditions,with a charging efficiency of 18.38%per hour.In the absence of ultra-micro hydro-generator and solar charging plate,a fully charged lithium battery with a rated capacity of 6800 mA·h can be used for at least 89,129 and 67 d under GPRS,WCDMA and LTE modes.If the charging efficiency of double generators reaches 1.12%(1/89),0.77%(1/129)and 1.49%(1/67)per day,the power demand of the whole system can be met.The charging efficiency of the system was higher than the required charging efficiency,which can ensure the continuous operation of the system and meet the system design requirements.The successful development of the system will save a lot of power infrastructure construction for intelligent irrigation,and also contribute to the realization of intelligent irrigation in remote areas of China.
作者
潘鹤立
郑超明
钟凤林
潘东明
PAN He-li;ZHENG Chao-ming;ZHONG Feng-lin;PAN Dong-ming(College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;Graduate School, Fujian Agriculture and Forestry University, Fuzhou 350002, China)
出处
《节水灌溉》
北大核心
2020年第7期89-95,100,共8页
Water Saving Irrigation
基金
2017福建省科技厅区域发展项目“物联网智慧蜜柚果园智能监控与专家决策系统研发应用”(2017N3005)
2018福建省发改委农业“五新”工程项目“蜜柚生态优质高效生产关键技术示范推广”(闽发改农业[2018]114号)。
作者简介
潘鹤立(1983-),男,讲师,博士,主要从事农业物联网方面的研究,E-mail:fafuphl@126.com;通讯作者:潘东明(1956-),男,教授,博士生导师,主要从事园艺方面的研究,E-mail:pdm666@126.com。