期刊文献+

多运动状态下自适应阈值步态检测算法 被引量:2

Algorithm of adaptive threshold gait detection in multiple motion states
在线阅读 下载PDF
导出
摘要 多种运动状态情况下,由于对步行者航位推算系统中步态检测不准确,导致推算定位误差增大。针对上述弊端,提出了多运动状态下自适应阈值步态检测算法。首先,通过改进的多阈值的步态检测算法,改善支撑区间检测的准确性。然后利用随机森林算法识别站立、走路、跑步、上楼和下楼等五种常见的室内运动状态,自适应匹配相应的步态检测的阈值,以实现多运动状态下的精准步态检测,提高行人航位推算系统精度。实测结果证明,相对于传统固定阈值检测算法,该算法平面定位精度提升33.1%,步态检测精度提升89.4%。 Under various motion states the gait detection in the pedestrian dead reckoning system is not always accurate,which leads to the increase of the positioning error.To solve the problem,an adaptive threshold gait detection algorithm in multi-motion state is proposed.Firstly,the improved multi-threshold gait detection algorithm is used to improve the accuracy of support interval detection.Secondly,the random forest algorithm is used to identify five common motions such as standing,walking,running,going upstairs and going downstairs,then the thresholds of corresponding gait detection is adaptively matched to the motions,so accurate gait detection in multiple motion states will be achieved and the precision of pedestrian dead reckoning(PDR)system will be improved.The experiment result shows that the horizontal positioning accuracy of the system used the proposed algorithm is improved by 33.1%,and the gait detection accuracy is improved by 89.4%,compared with the traditional algorithm.
作者 宁一鹏 梁建 王坚 NING Yipeng;LIANG Jian;WANG Jian(School of Surveying and Geo-Informatics,Shandong Jianzhu University,Jinan 250101,China;School of Environment Science and Spatial Information,China University of Mining and Technology,Xuzhou 221116,China;School of Geomatics and Urban Spatial Informatics,Beijing University of Civil Engineering and Architecture,Beijing 102616,China)
出处 《中国惯性技术学报》 EI CSCD 北大核心 2020年第2期172-178,185,共8页 Journal of Chinese Inertial Technology
基金 国家自然科学基金青年基金(41904029) 2019年山东省高等学校青创人才引育计划。
关键词 行人航位推算 多阈值 自适应 步态检测 随机森林算法 pedestrian dead reckoning multi-threshold adaptive gait detection random forest algorithm
作者简介 宁一鹏(1990—),男,讲师,博士研究生,从事无缝定位技术研究。E-mail:ningyipeng19@sdjzu.edu.cn。
  • 相关文献

参考文献8

二级参考文献52

  • 1闫钧华,陈少华,艾淑芳,李大雷,段贺.基于Kalman预测器的改进的CAMShift目标跟踪[J].中国惯性技术学报,2014,12(4):536-542. 被引量:30
  • 2陈国良,张言哲,杨洲.一种基于手机传感器自相关分析的计步器实现方法[J].中国惯性技术学报,2014,12(6):794-798. 被引量:46
  • 3Fourati H. Heterogeneous data fusion algorithm for pedestrian navigation via foot-mounted inertial measure- ment unit and complementary filter[J]. IEEE Transac- tions on Instrumentation and Measurement, 2014, 64(1): 221-229.
  • 4Skog I, Nilsson J, Handel P. Evaluation of zero-velocity detectors for foot-mounted inertial navigation systems[C] //IEEE IP1N, 2010: 1-6.
  • 5Zhang Hemin, Yuan Weizheng, Shen Qiang, et al. A handheld inertial pedestrian navigation system with accurate step modes and device poses recognition[J]. IEEE Sensors Journal, 2015, 15(3): 1421-1429.
  • 6Kang W, Hart Y. Smart PDR: Smartphone-based pedestrian dead reckoning for indoor localization[J]. IEEE Sensors Journal, 2015, 15(5): 2906-2916.
  • 7Bancroft J B, Lachapelle G. Estimating MEMS gyroscope g-sensitivity errors in foot mounted navigation [C]//Ubiquitous Positioning, Indoor Navigation, and Location Based Service. Helsinki, 2012: 1-6.
  • 8Borenstein J, Ojeda L, Kwanmuang S. Heuristic reduc- tion of gyro drift for personnel tracking systems[J]. The Journal of Navigation, 2009, 62(1): 41-58.
  • 9Fan C, Hu X, He X. Observability analysis of a MEMS INS/GPS integration system with gyroscope g-sensitivity errors[J]. Sensors, 2014, 14(9): 16003-16016.
  • 10Yadav N, Bleakley C. Accurate orientation estimation using AHRS under conditions of magnetic distortion[J]. Sensors, 2014, 14(11): 20008-20024.

共引文献244

同被引文献11

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部