期刊文献+

基于太赫兹技术的太阳能电池寿命预测算法

Solar cell lifetime prediction algorithm based on terahertz technology
在线阅读 下载PDF
导出
摘要 针对太阳能电池软退化模式下的寿命预测难度大,准确度不高等问题,提出一种先利用太赫兹光谱仪获取太阳能电池板光谱,再用基于布谷鸟算法改进的粒子群-支持向量机回归(PSO-SVR)算法预测其剩余寿命的新方法。利用紫外加速试验对预测结果进行验证对比,结果表明,该方法可用于预测不同损耗程度的太阳能电池的剩余寿命,在传统硅太阳能电池板和砷化镓太阳能电池的寿命预测上,相较于其他算法有更好的表现,其准确度分别高达98.92%和92.86%。 Aiming for the low accuracy and difficulty of predicting solar cell life by using soft failure mode,a new method is proposed to obtain solar panel spectrum by using terahertz spectrometer.Based on the cuckoo algorithm,the study predicts the cell's remaining life by applying Particle Swarm Optimization-Support Vector Regression(PSO-SVR)algorithm and finally employs the ultraviolet acceleration test to verify the prediction results.It turns out that the method is applicable to predict the remaining life of solar cells with different levels of loss.Compared with other algorithms,the technique works better on the life prediction of traditional silicon solar panels and GaAs solar cells,and the accuracies are up to 98.92%and 92.86%respectively.
作者 周兴 朱希安 王占刚 ZHOU Xing;ZHU Xi’an;WANG Zhangang(School of Telecommunications Engineering,Beijing Information Science and Technology University,Beijing 100101,China)
出处 《太赫兹科学与电子信息学报》 北大核心 2020年第3期374-379,共6页 Journal of Terahertz Science and Electronic Information Technology
基金 北京市科技创新服务能力建设基本科研业务费资助项目(市级)(科研类)(PXM2019_014224_000026) 北京市科技创新服务能力建设提升计划资助项目(PXM2017_014224_000009) 2018年促进高校内涵发展资助项目。
关键词 太阳能电池 太赫兹光谱 粒子群优化 软退化模式 solar cell terahertz spectroscopy Particle Swarm Optimization soft failure mode
作者简介 周兴(1995-),男,在读硕士研究生,主要研究方向为智能信号处理。email:1275388185@qq.com。
  • 相关文献

参考文献5

二级参考文献26

  • 1吕品,马云歌,周心权.上隅角瓦斯浓度动态预测模型的研究及应用[J].煤炭学报,2006,31(4):461-465. 被引量:29
  • 2Johnson M H,Ball J K.Combined release and radiation effects satellite(CRRES),spacecraft and mission[J].J.Spacecraft and Rockets,1992,29(4):556-563.
  • 3Laue E,Gupta A.Reactor for simulation and acceleration of solar ultraviolet damage[J].Jet Propulsion Laboratory California Institute of Technology,1979,193.
  • 4Nelson W.Analysis of performance-degradation data form accelerate testing[J].IEEE Trans.on Reliability,1981,30(2).
  • 5Ferguson B, Wang S, Gray D, et al. Identification of bio- logical tissue using chirped probe THz imaging[ J]. Microe- lectronics Journal, 2002, 33:1043 - 1051.
  • 6Hiromichi Hoshina, Yoshiaki Sasaki, Aya Hayashi, et al. Noninvasive mail inspection system with terahertz radiation [J]. Applied Spectroscopy, 2009, 63(1) :81 -86.
  • 7Shen Y C, Lo T, Taday P F, et al. Detection and identifi- cation of explosives using terahertz pulsed spectroscopic im- aging[ J ]. Applied Physics Letters, 2005, 86, 241116 : 1 - 3.
  • 8Davies A G, Bumett A D, FAN Wen-Hua, et al. Terahertz spectroscopy of explosives and drugs [ J ]. Materials today, 2008, 11(3) :18 -26.
  • 9Nakajima S, Hoshina H, Yamashita M, et al. Terahertz im- aging diagnostics of cancer tissues with a chemometrics technique[ J ]. Applied Physics Letters, 2007, 90, 041102 : 1-3.
  • 10Mittleman D M, Gupta M, Neelamani R, et al. Recent ad- vances in terahertz imaging [ J ]. Applied Physics, 1999, 68 : 1085 - 1094.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部