期刊文献+

基于深度学习的安全帽佩戴检测与跟踪 被引量:8

Detection and Tracking of Hard Hat Wearing Based on Deep Learning
在线阅读 下载PDF
导出
摘要 为了解决传统施工现场安全管理的弊端,减少因施工人员未佩戴安全帽造成的人员伤亡,本文提出一种基于深度学习的安全帽佩戴检测与跟踪方法。首先通过深度学习YOLOv3目标检测网络实现安全帽佩戴检测,进一步运用卡尔曼滤波器和KM算法实现多目标跟踪与计数。复杂施工现场的测试结果表明:网络模型的检测速度可达45 fps,平均精确度为93%,且未佩戴安全帽的查准率和查全率分别为97%和95%,基本能够实现安全帽佩戴情况的实时检测。 In order to solve the shortcomings of traditional construction site safety management and reduce casualties caused by construction workers not wearing hard hats,a method for detecting and tracking hard hat wearing based on deep learning is proposed.Firstly,the YOLOv3 target detection network is used to realize the helmet wearing detection,and the Kalman filter and the KM algorithm are used to implement multi-target tracking and counting.The test results at a complex construction site show that the detection speed of the network model can reach 45 fps,with an average accuracy of 93%,and the accuracy and recall rates without a helmet are 97%and 95%respectively.This model basically realizes the real-time detection of the wearing condition of the helmet.
作者 秦嘉 曹雪虹 焦良葆 QIN Jia;CAO Xue-hong;JIAO Liang-bao(School of Information and Communication Engineering, Nanjing Institute of Technology, Nanjing 211100, China)
出处 《计算机与现代化》 2020年第6期1-6,共6页 Computer and Modernization
基金 国家自然科学基金资助项目(61703201) 江苏省自然科学基金资助项目(BK20170765)。
关键词 安全帽 目标检测 目标跟踪 YOLOv3网络 K-means++聚类 卡尔曼滤波 KM算法 safety helmet target detection target tracking YOLOv3 network K-means++clustering Kalman filtering KM algorithm
作者简介 秦嘉(1994-),女,江苏徐州人,硕士研究生,研究方向:深度学习,目标检测,E-mail:971100523@qq.com;曹雪虹(1964-),女,教授,博士生导师,研究方向:智能电网及其信息技术;焦良葆(1972-),男,教授,博士,研究方向:图像信号处理,视觉信息理解。
  • 相关文献

参考文献20

二级参考文献85

  • 1马春庭,郑坚,陈东根,崔亮.地面战场侦察系统多目标识别的评价指标[J].探测与控制学报,2006,28(1):6-9. 被引量:10
  • 2陆伟,倪林.利用颜色和熵提取感兴趣区域的感性图像检索[J].中国图象图形学报,2006,11(4):492-497. 被引量:18
  • 3侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:257
  • 4Birchfield S, Sriram R. Spatiograms versus histograms for region-based tracking [C]//CVPR05, Pages II. San Diego: IEEE CS Press, 2005: 1158- 1163.
  • 5Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking [J]. PAMI, 2003, 5: 564-577.
  • 6Zhu W, Levinson S E. Edge orientation-based multiview object recognition [C]// ICPR00. Barcelona.. IEEE CS Press, 2000:1936-1939.
  • 7Melnerney T, Terzopoulos D. T-snakes: Topology adaptive snakes [J]. Medical linage Analysis, 2000, 2: 73- 91.
  • 8Kailath T. The divergence and Bhattacharya distance measures in signal selection [J]. IEEE Transaction on Communication Technology, 1967, 15:52 - 60.
  • 9Porikli F. Integral histogram: A fast way to extract histograms in Cartesian spaces [C]//CVPR05, Pages I. San Diego : IEEE CS Press, 2005 : 829 - 836.
  • 10Ritendra D. , Dhiraj J. Li J. , et al.. Image retrieval:i- deas, influences, and trends of the new age [ J ]. ACM Transactions on Computing Survey, 2008, 40 ( 2 ) : 1-66.

共引文献392

同被引文献56

引证文献8

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部