期刊文献+

旋流对驻涡燃烧室湍流流动的影响 被引量:2

The effect of swirl on turbulence flow in trapped-vortex combustor
原文传递
导出
摘要 为分析旋流对湍流流动的影响,对并排双旋流模式以及无旋流模式下的流场进行了数值模拟。在冷态下,旋流间的相互作用主要影响回流区形态,旋流极大拓展了湍流大脉动区域,适中的旋流更利于维持双涡结构。在热态下,旋流对回流区总体强度的影响比冷态更强烈,双旋流使凹腔湍流脉动受到抑制。燃烧能显著改变凹腔回流区和旋流回流区形态,增强旋流回流区强度,缩小其尺度,但使凹腔回流区尺度和强度均明显减小。燃烧可改善双涡结构,使气流旋动比湍流脉动具有更强的轴向衰减特性。 In order to analyze the influence of swirl on turbulent flow, numerical simulation on traped-vortex combustor with dual swirlers and without swirler was performed. For non-reacting flow, swirl mainly affects recirculation zone structure, and it can expand the scope of intense turbulent fluctuation region. Moderate swirl can help to maintain dual vortex. For reacting flow, the effect of swirl on the overall strength of the recirculation zone is stronger than that fornon-reacting flow. However, dual swirl suppresses cavity turbulent fluctuation. Combustion can change cavity recirculation and swirl recirculation form apparently, it strengthens the swirl recirculation intensity and reduces its scale, but combustion reduces both cavity recirculation scale and cavity intensity obviously. Combustion can improve dual vortices structure, and make stronger axial attenuation characteristics for the gas than forturbulent fluctuation.
作者 曾卓雄 张永祺 张龙 ZENG Zhuoxiong;ZHANG Yongqi;ZHANG Long(College of Power and Mechanical Engineering,Shanghai University of Electric Power,Shanghai 200090*China;School of Aircraft Engineering,Nanchang Hangkong University,Nanchang 330063,China)
出处 《热科学与技术》 CAS CSCD 北大核心 2020年第2期139-145,共7页 Journal of Thermal Science and Technology
基金 国家重点研发计划资助项目(2018YFB0604204) 上海市科委地方高校能力建设资助项目(9020500900)。
关键词 旋流 驻涡燃烧室 燃烧室性能 swirl trapped vortex combustor combustor performance
作者简介 曾卓雄,男,1972年生,博士,教授,主要研究领域为动力工程.E-mail:zerigzhx@163.com。
  • 相关文献

参考文献1

二级参考文献13

  • 1樊未军,易琪,严明,杨茂林.驻涡燃烧室凹腔双涡结构研究[J].中国电机工程学报,2006,26(9):66-70. 被引量:47
  • 2Ezhil Kumar P K, Mishra D P. Numerical Simulation of Cavity Flow Structure in an Axisymmetric Trapped Vor- tex Combustor [J].Aerospace Science and Technology, 2012, 21(1): 16-23.
  • 3Ghenai C, Zbeeb K, Janajreh I. Combustion of Alterna- tive Fuels in Vortex Trapped Combustor [J]. Energy Conversion and Management, 2013, 65: 819-828.
  • 4Meyer T R, Brown M S, Fonov S, et al. Optical Diag-nostics and Numerical Characterization of a Trapped- vortex Combustor[R]. AIAA 2002-3863.
  • 5Stone C, Menon S. Simulation of Fuel-Air Mixing and Combustion in a Trapped- Vortex Combustor [ R]. AIAA 2000-0478.
  • 6Agarwal K K, Ravikrishna R V. Experimental and Nu- merical Studies in a Compact Trapped Vortex Combus- tor: Stability Assessment and Augmentation[J]. Combus- tion Science and Technology, 20lL, 183 (12): 1308- 1327.
  • 7Edmonds R G, Steele 1t C, Williams J T, et al. Ultra- low NO Advanced Vortex Combustor [R]. ASME GT 2006-90319.
  • 8邢菲,孟祥泰,李继保,樊未军.凹腔双驻涡稳焰冷态流场初步研究[J].推进技术,2008,29(2):135-138. 被引量:18
  • 9张韬,宋双文,樊未军,张荣春.双涡/贫油驻涡燃烧室的贫油熄火特性试验[J].航空动力学报,2011,26(6):1328-1333. 被引量:5
  • 10Zhang Rongchun Fan Weijun.Flow Field Measurements in the Cavity of a Trapped Vortex Combustor Using PIV[J].Journal of Thermal Science,2012,21(4):359-367. 被引量:6

共引文献9

同被引文献15

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部