期刊文献+

无模逆运算的椭圆曲线数字签名算法 被引量:8

Elliptic Curve Digital Signature Algorithm Without Modular Inverse Operation
在线阅读 下载PDF
导出
摘要 经典的椭圆曲线数字签名(ECDSA)在签名和验证过程各使用了1次求逆运算,复杂费时的求逆运算制约着数字签名效率的提升。针对目前ECDSA的局限性,业界提出了很多改进方案,然而一些改进方案仅仅从ECDSA计算效率的提高入手,但却未能将诸如伪造签名攻击的问题考虑在内。在对经典ECDSA方案分析的基础上,兼顾椭圆曲线数字签名的安全性和计算效率,提出了一种改进的椭圆曲线数字签名新方案,并通过理论分析和仿真实验证明了新方案的安全性和高效性。研究结果表明,改进的方案通过引入双参数以及在签名和验证阶段回避求Zp*逆运算,既提高了数字签名的计算效率又能防止数字签名伪造攻击。 The classic ECDSA scheme uses one inversion operation in the process of signature and verification,and the complex and time-consuming inversion operation restricts the efficiency of digital signature.In view of the limitations of ECDSA,many improvement schemes have been put forward in the industry.However,some improvement schemes only start from the improvement of ECDSA computing efficiency,but they fail to take into account such issues as forgery signature attack.Based on the analysis of the classical ECDSA scheme,taking into account the security and calculation efficiency of the elliptic curve digital signature,an improved new scheme of the elliptic curve digital signature is proposed and the security and efficiency of the new scheme are proved through theoretical analysis and simulation experiments.The results show that the improved scheme can not only improve the efficiency of digital signature calculation,but also prevent the forgery attack of digital signature by introducing two parameters and avoiding the inverse operation in the signature and verification phase.
作者 肖帅 王绪安 潘峰 XIAO Shuai;WANG Xu’an;PAN Feng(Key Laboratory for Network and Information Security of Chinese Armed Police Force,Engineering University of Chinese Armed Police Force,Xi’an 710086,China;Institute of Cryptology Engineering,Engineering University of Chinese Armed Police Force,Xi’an 710086,China)
出处 《计算机工程与应用》 CSCD 北大核心 2020年第11期118-123,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61772550,No.U1636114,No.61572521) 陕西省自然科学基础研究计划项目(No.2018JM6028) 国家密码发展基金(No.MMJJ20170112) 国家重点研发计划(No.2017YFB0802000)。
关键词 椭圆曲线数字签名 伪造攻击 安全性 模逆运算 elliptic curve digital signature forgery attack security modular inverse operation
作者简介 肖帅(1992-),男,硕士,研究领域为数字签名,E-mail:756617001@qq.com;王绪安(1981-),男,博士,副教授,硕士生导师,研究领域为密码学,信息安全;潘峰(1967-),男,教授,硕士生导师,研究领域为对称密码。
  • 相关文献

参考文献10

二级参考文献83

  • 1赵泽茂,刘凤玉,徐慧.基于椭圆曲线密码体制的签名方程的构造方法[J].计算机工程,2004,30(19):96-97. 被引量:17
  • 2白永志,叶震,钱焜,汪骏飞,陈定.基于椭圆曲线的数字签名方案的研究[J].合肥学院学报(自然科学版),2005,15(3):5-8. 被引量:4
  • 3Johnson D, Menezes A, Vanstone S. The elliptic curve digital signature algorithm (ECDSA) [J]. International Journal of Information Security,2001,1:36 -63.
  • 4Menezes A, Orschot P, Vanstone S. Handbook of Applied Cryptography [ M ]. London : CRC Press, 1996:454 - 459.
  • 5Washington L C. Elliptic curves number theory and cryptography-discrete mathematics and its applications [ M ]. New York: Chapman &HalI/CRC Press, 2003.
  • 6孙建梅 高宝建 等.一种基于HASH函数的图像内容认证方案.西北大学学报:自然科学版,2004,34.
  • 7N Koblitz.Elliptic Curves Cryptosystems[J].Math Comp.1987,48 (177):203 -209.
  • 8V Miller.Uses of Elliptic Curves in Cryptography[A].Advance in Cryptology-CRYPTO,Lecture Notes in Computer Science[M] Springer-Vedag,1986:417-427.
  • 9ANSI X9.62.Public Key Cryptography for the Financial Services Industry:The Elliptic Curves Digital Signature Algorithm (ECDSA)[S].
  • 10Johson D Menezes A.The elliptic curve digital signature algorithm[J].Technical Report,CORR99-31,Canada:Department of Combinatorics and Optimization,University of Waterloo,1999.

共引文献29

同被引文献71

引证文献8

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部