摘要
                
                    基于视频的异常事件自动检测技术一直是学术界和企业界研究的热点,在人群监控、交通管理、老人儿童和特殊病人的护理等方面发挥了重要的作用。文章首先介绍传统的异常检测方法,然后从评价指标、基本网络模型、检测框架、基准数据集等方面详细介绍了深度学习在异常检测中的研究进展,最后对未来的研究方向进行了展望。
                
                The technology of of video-based abnormal events automatic detection has always been a hot topic in academic and business circles,which plays an important role in crowd detection,traffic management,nursing of the elderly and children and special patients.In this paper,firstly we introduces the traditional anomalous detection methods,then the research progress of deep learning in anomaly detection is introduced in detail from evaluation index,basic network model,detection framework,benchmark data set and so on.Finally,the future research direction is prospected.
    
    
                作者
                    符祖峰
                    刘松
                    王德红
                    牟珍
                    郑维鑫
                FU Zufeng;LIU Song;WANG Dehong;MOU Zhen;ZHENG Weixin(School of Electronics and Information Engineering,Anshun University,Anshun 56100,Guizhou,China;Editorial Department of Journal of Anshun University,Anshun 56100,Guizhou,China)
     
    
    
                出处
                
                    《安顺学院学报》
                        
                        
                    
                        2020年第2期130-135,共6页
                    
                
                    Journal of Anshun University
     
            
                基金
                    安顺学院校级SRT项目“校园人群异常聚集的快速检测技术”(项目编号:asxysrt201802)。
            
    
                关键词
                    深度学习
                    人群异常检测
                    视频监控
                
                        deep learning
                        crowd anomalous detection
                        video surveillance
                
     
    
    
                作者简介
符祖峰(1978~),男,河南南阳人,安顺学院电子与信息工程学院副教授,研究方向:算法设计与分析、机器视觉;刘松(1998~),男,贵州遵义人,安顺学院电子信息工程学院学生。