期刊文献+

基于矩阵补全的自适应去雨雪算法 被引量:1

Adaptive deraining and desnowing algorithm based on matrix completion
在线阅读 下载PDF
导出
摘要 传统去雨雪方法通常没有考虑参数的自适应问题。为了提高视频去雨雪的效果,在Kim方法的矩阵补全模型中添加了一个自适应参数并提出了基于矩阵补全的自适应去雨雪算法。首先,简要地描述Kim方法的主要工作;其次,把自适应参数添加到经典的Kim模型的第二项;最后,使用各种雨雪视频验证了该参数的有效性及优异性,并使用网格搜索法找到去雨效果最好的参数。实验结果表明,添加的自适应参数能够有效地去除视频中的雨雪。 The traditional methods of deraining and desnowing usually have not considered the parameter adaptive problem.In order to improve the effect of video deraining and desnowing,this paper added an adaptive parameter to the matrix completion model of Kim method,and proposed an adaptive deraining and desnowing algorithm based on matrix completion.Firstly,this paper introduced the main work of Kim method.Secondly,the proposed algorithm added the adaptive parameter to the second term of the classic Kim model.Finally,this paper used various rain and snow videos to verify the validity and superiority of the parameter,and applied the grid-search method to find the parameter with the best rain removal effect.Experimental results show that the added adaptive parameter can effectively remove rain and snow from the videos.
作者 田文英 黄成泉 冉龙才 Tian Wenying;Huang Chengquan;Ran Longcai(School of Data Science&Information Engineering,Guizhou Minzu University,Guiyang 550025,China;Engineering Training Center,Guizhou Minzu University,Guiyang 550025,China)
出处 《计算机应用研究》 CSCD 北大核心 2020年第5期1570-1573,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61762020,61802082) 贵州民族大学科研基金资助项目(2017YB073)。
关键词 视频去雨雪 雨线去除 自适应参数 稀疏表示 矩阵补全 video deraining and desnowing rain streak removal adaptive parameter sparse representation matrix completion
作者简介 田文英(1992-),女,贵州松桃人,硕士,主要研究方向为图像处理、计算机视觉、机器学习;通信作者:黄成泉(1976-),男(仡佬族),贵州黄平人,教授,博士,主要研究方向为图像处理、模式识别、机器学习(hcq863@163.com);冉龙才(1994-),男,贵州册亨人,硕士,主要研究方向为图像处理、计算机视觉、机器学习.
  • 相关文献

参考文献3

二级参考文献60

  • 1JIANG Xu-dong. Linear subspace learning-based dimensionality reduction [ J ]. I EEE Signal Processing Magazine,2011,28 ( 2 ) : 16- 26.
  • 2DONOHO D L. Compressed sensing[ J]. IEEE Trans on Information Theory,2006,52 (4) : 1289-1306.
  • 3CANDES E J, MICHAEL W. An introduction to compressive sampling [J]. IEEE Signal Processing Magazine,2008,25(2) :21-30.
  • 4WRIGHT J, ALLEN Y, GANESH A, et al. Robust face recognition via sparse representation[ J]. IEEE Trans on Pattern Analysis and Machine Intelligence ,2009,31 ( 2 ) :210-227.
  • 5WRIGHT J, MA Yi, MAIRAL J, et al. Sparse representation for computer vision and pattern recognition [ J ]. Proceedings of the IEEE,2010, 98(6) :1031-1044.
  • 6WRIGHT J, GANESH A, RAO S, et al. Robust principal component analysis : exact recovery of corrupted low-rank matrices via convex optimization [ C ]//Proc of the 24th Annual Conference on Neural Information Processing Systems. 2009 : 2080-2088.
  • 7CANDES E J, LI Xiao-dong, MA Yi, et al. Robust principal component analysis? [J]. dournal of the AOM,2011,58(3) :1-37.
  • 8XU Huan, CARAMANIS C, SANGHAVI S. Robust PCA via outlier pursuit [ J]. IEEE Trans on Information Theory, 2012,58 ( 5 ) : 3047- 3064.
  • 9CANDES E J, RECHT B. Exact matrix completion via convex optimization[J]. Foundations of Computational Mathematics,2009,9 (6) :717-772.
  • 10CANDES E J, TAO T. The power of convex relaxation : Near-optimal matrix completion[ J]. IEEE Trans on Information Theory,2010, 56 ( 5 ) :2053- 2080.

共引文献83

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部