期刊文献+

自适应Gabor卷积核编码网络的表情识别方法 被引量:5

Expression Recognition Method for Adaptive Gabor Convolution Kernel Coding Network
在线阅读 下载PDF
导出
摘要 人脸表情识别是计算机视觉领域研究的热点之一。针对传统Gabor网络提取表情图像高维特征识别率不高、泛化性不强的问题,结合卷积神经网络学习局部特征的优点,提出多通道、图像分块、优化Gabor卷积核参数的方法实现表情图像卷积,对提取的表情自适应特征进行分析,首先进行通道内降维,然后采用自动编码器理论解决高维特征降维和多通道特征融合的问题。因为传统支持向量机(Support Vector Machine,SVM)对多分类问题不敏感,所以采用遗传算法优化出最大间隔分类面,进而得到适应度较高的分类器参数。对设计的GaAeS-net(Gabor Autoencoder Support Vector Machine Convolution Network)网络分别在CK+、JAFFE、FER2013、CHD2018等数据库上进行实验,并与现有模型进行对比,最高识别率可达到99.34%,从而证明GaAeS-net模型具备良好的识别率和泛化性。 Facial expression recognition is one of the hotspots in the field of computer vision. Aiming at the problems that the extracted high-dimensional features recognition rate of facial expression images is poor and the generalization is almost unsatisfactory, combined with the advantages of convolutional neural network to learn local features, this paper proposes a method of multi-channel, image segmentation and optimization of Gabor convolution kernel parameters to realize image convolution, and analyzes the extracted expression adaptive features. Automatic encoder theory is used to realize high dimensional feature dimension reduction and multi-channel feature fusion. Because the traditional SVM(Support Vector Machine)is not sensitive to multi-classification tasks, the genetic algorithm is used to optimize the maximum interval classification surface and obtain fitter classifier parameters. Finally, the designed GaAeS-net(Gabor Autoencoder Support Vector Machine Convolution Network)is tested on CK +, JAFFE, FER2013, CHD2018 and other databases, and compared with the existing models. The highest recognition rate reaches 99.34% by GaAeS-net, which proves that the model has a good recognition rate and generalization.
作者 梁华刚 张志伟 王亚茹 LIANG Huagang;ZHANG Zhiwei;WANG Yaru(School of Electronics and Control Engineering,Chang’an University,Xi’an 710000,China)
出处 《计算机工程与应用》 CSCD 北大核心 2020年第10期149-156,共8页 Computer Engineering and Applications
基金 陕西省重点产业链(群)项目(No.2017ZDL-G-2-3)。
关键词 表情识别 Gabor核 卷积神经网络 自动编码器 遗传算法 支持向量机(SVM) 参数优化 expression recognition Gabor kernel convolutional neural network automatic encoder genetic algorithm Support Vector Machine(SVM) parameter optimization
作者简介 梁华刚(1980—),男,博士研究生,副教授,研究领域为数字图像处理、机器视觉、模式识别、人工智能;张志伟(1992—),男,硕士研究生,研究领域为数字图像处理、机器视觉、人工智能,E-mail:2017232035@chd.edu.cn;王亚茹(1993—),女,硕士研究生。
  • 相关文献

参考文献10

二级参考文献109

  • 1朱娅妮,杜加友.基于多特征融合的人脸表情识别[J].杭州电子科技大学学报(自然科学版),2009,29(5):141-144. 被引量:2
  • 2王阳,穆国旺,睢佰龙.基于HOG特征和SVM的人脸表情识别[J].河北工业大学学报,2013,42(6):39-42. 被引量:7
  • 3左坤隆,刘文耀.基于活动外观模型的人脸表情分析与识别[J].光电子.激光,2004,15(7):853-857. 被引量:19
  • 4朱健翔,苏光大,李迎春.结合Gabor特征与Adaboost的人脸表情识别[J].光电子.激光,2006,17(8):993-998. 被引量:48
  • 5刘晓旻,谭华春,章毓晋.人脸表情识别研究的新进展[J].中国图象图形学报,2006,11(10):1359-1368. 被引量:62
  • 6Zhan Yongzhao, Ye Jingfu, Niu Dejiao. Facial Expression Recog- nition Based on Gabor Wavelet Transformation and Elastic Templates Matching[J]. International Journal of Image and Graphics, 2006, 6(1): 125-138.
  • 7Wright J, Ma Yi, Mairal J, et al. Sparse Representation for Computer Vision and Pattern Recognition[J]. Proceedings of the IEEE, 2010, 98(6): 1031-1044.
  • 8Baraniuk R, Candes E, Elad M. Applications of Sparse Representation and Compressive Sensing[J]. Proceedings of the IEEE, 2010, 98(6): 906-909.
  • 9Wright J, Yang A Y, Ganesh A, et al. Robust Face Recognition via Sparse Representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
  • 10Wagner A, Wright J, Ganesh A, et al. Towards a Practical Face Recognition System: Robust Registration and Illumination by Sparse Representation[C]//Proc. of IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE Press, 2009: 597-604.

共引文献150

同被引文献24

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部