期刊文献+

多无人机航迹规划的自适应B样条算法 被引量:4

Adaptive B-Spline Algorithm for Multi-UAV Path Planning
在线阅读 下载PDF
导出
摘要 无人机集群能更高效地完成复杂和具有挑战性的任务,航迹规划和编队控制是无人机集群的研究重点。针对复杂环境下的无人机编队控制问题,提出了一种结合分段自适应B样条(Piecewise Adaptive B-Spline,PABS)方法的领航-跟随策略。采用滚动时域控制及快速粒子群优化算法为领航者无人机生成一条安全的参考航迹,并根据跟随者与领航者保持的几何关系为跟随者无人机生成参考航迹。针对生成的跟随者航迹不平滑以及可能与障碍物发生碰撞的问题,使用PABS方法对跟随者航迹进行平滑和避障处理。实验表明,使用滚动时域控制及快速粒子群优化算法及PABS方法能为领航-跟随策略下的无人机编队生成安全平滑的航迹,相比于圆弧插补技术,PABS方法能使航迹更光滑。 UAV clusters can perform complex and challenging tasks more efficiently, and path planning and formation control are the focus of research on UAV clusters. Aiming at the problem of UAV formation control in complex environments, a leader-follower strategy combining Piecewise Adaptive B-Spline(PABS)is proposed. The Receding Horizon Control and the Fast Particle Swarm Optimization(RHC-FPSO)algorithm is used to generate a safe reference path for the leader. And the reference paths are generated for the followers according to the geometric relationship maintained by the followers and the leader. Followers’ paths are smoothed by the PABS method for the problem that the paths of followers may not be smooth. Since the path will collide with obstacles in the environment, the path is planned by the adaptive B-spline method to achieve obstacle avoidance. Experiments show that the RHC-FPSO method and the PABS method can generate safe and smooth paths for the UAVs in the formation under the leader-follower strategy. Compared with the circular interpolation technique, the PABS method can make the path smoother.
作者 彭皓月 秦小林 侯屿 张力戈 PENG Haoyue;QIN Xiaolin;HOU Yu;ZHANG Lige(Chengdu Institute of Computer Applications,Chinese Academy of Sciences,Chengdu 610041,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《计算机工程与应用》 CSCD 北大核心 2020年第9期260-266,共7页 Computer Engineering and Applications
基金 国家自然科学基金(No.61402537) 中国科学院西部青年学者项目 四川省委组织部人才专项支持 广西混杂计算与集成电路设计分析重点实验室开放基金(No.HCIC201706)。
关键词 无人机编队 滚动时域控制 B样条 航迹规划 航迹平滑 UAV formation receding horizon control B-spline path planning path smoothing
作者简介 彭皓月(1993—),女,硕士研究生,研究领域为无人机路径规划、群体智能算法,E-mail:374535912@qq.com;秦小林(1980—),男,博士,研究员,博士生导师,研究领域为自动推理、集群智能;侯屿(1993—),男,硕士研究生,CCF会员,研究领域为机器学习、大数据;张力戈(1995—),男,博士研究生,研究领域为机器学习、优化算法。
  • 相关文献

参考文献5

二级参考文献57

  • 1DUAN HaiBin & LIU SenQi National Key Laboratory of Science and Technology on Holistic Flight Control,School of Automation Science and Electrical Engineering,Beijing University of Aeronautics and Astronautics,Beijing 100191,China.Unmanned air/ground vehicles heterogeneous cooperative techniques:Current status and prospects[J].Science China(Technological Sciences),2010,53(5):1349-1355. 被引量:18
  • 2张航,王琦.基于RHC的无人机自主轨迹优化算法研究[J].航空计算技术,2007,37(4):67-70. 被引量:2
  • 3Tanner H G,Jadbabaie A,Pappas G J.Coordination of multiple au- tonomous agents. Proceeding of the 11th IEEE Mediterranean Conference on Control and Automation . 2003
  • 4Gowtham G,Kumar K S.Simulation of multi UAV flight formation. Proceeding of the 24th IEEE/AIAA Digital Avionics Systems Con- ference . 2005
  • 5Duan H B,Ding Q X,Liu S Q, et al.Time-delay compensation of heterogeneous network control for multiple UAVs and UGVs. J In- ternet Technol . 2010
  • 6Duan H B,Zhang X Y,Xu C F.Bio-inspired Computing. . 2011
  • 7Rudol P,Wzorek M,Conte G, et al.Micro unmanned aerial vehicle visual serving for cooperative indoor exploration. Proceeding of the 2008 IEEE Aerospace Conference . 2008
  • 8Ariyur K B,Fregene K O.Autonomous tracking of a ground vehicle by a UAV. Proceedings of American Control Conference . 2008
  • 9Michael T,Blake B.Semi-autonomous UAV/UGV for dismounted urban operations. Proceedings of SPIE the International Society for Optical Engineering . 2010
  • 10Phan C,Liu H T.A cooperative UAV/UGV platform for wildfire de- tection and fighting. Proceedings of 2008 Asia Simulation Confer- ence -7th International Conference on System Simulation and Scien- tific Computing . 2008

共引文献132

同被引文献37

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部