期刊文献+

免疫相关LncRNA与膀胱癌预后关系分析及预测模型建立 被引量:3

Analysis of prognostic immune-related LncRNA and development of prognostic model for bladder cancer patients
在线阅读 下载PDF
导出
摘要 目的分析免疫相关LncRNA与膀胱癌预后的关系,建立预测模型并初步探讨各组免疫特征。方法从TCGA数据库下载393例膀胱癌患者的基因表达谱及相应预后信息,通过R和Perl软件分析处理数据并提取免疫相关LncRNA;应用COX风险比例回归模型分析预后相关LncRNA并在此基础上构建预测模型,采用Kaplan-Meier法绘制生存曲线并对组间差异进行log-rank检验;通过ROC曲线下面积(AUC)评价模型的预测准确度;采用主成分分析(PCA)及基因富集分析(GSEA)各组中免疫相关基因的分布,采用ESTIMATE法评估各样本免疫微环境的组成。结果通过单因素及多因素COX回归分析确定5个免疫相关LncRNA,根据回归系数β对其赋值并计算患者评分,构建预测模型并分为高风险组和低风险组,两组的生存期具有明显统计学差异(P<0.001);预测模型ROC曲线下面积AUC:0.69;高、低风险组患者免疫相关基因分布具有明显的差异,且高风险组免疫评分较高。结论基于免疫相关LncRNA构建的模型能够较好的预测膀胱癌患者的生存及免疫状态,有助于临床上进行预后判断及分层个体化治疗。 Objective To analyze the relationship between immune-related LncRNA and the prognosis of bladder cancer,develop a prognostic model and explore the immune characteristics further.Methods The gene expression profiles and prognosis information of 393 bladder cancer patients were downloaded from TCGA database.The immune-related LncRNAs were extracted by R and Perl software.Predictive LncRNAs were identified by Cox regression analysis and a prognostic model was constructed.Kaplan-Meier curves were plotted to estimate overall survival and evaluated with the log-rank test.The predictive accuracy of the model was evaluated by the area under the ROC curve(AUC).Principal component analysis(PCA)and Gene Set Enrichment Analysis(GSEA)were used to observe the distribution of immune-related genes in each group.ESTIMATE method was used to evaluate the composition of the immune microenvironment.Results Five immune-related LncRNAs were determined by univariate and multivariate COX regression analysis.The patient scores were calculated according to the regression coefficientsβof these LncRNA.The predictive model was constructed and divided into high-risk group and low-risk group.There was a significant difference in survival between the two groups(P<0.001)and the AUC of the model was 0.690.There were significant differences in the distribution of immune-related genes between the two groups,and the immune score was higher in the high-risk group.Conclusion The prognostic model based on immune-related LncRNA could predict the prognosis and immune status of melanoma patients which could be conducive to clinical prognosis judgment and individual treatment.
作者 王尧 周旻 柳子川 游华 Wang Yao;Zhou Min;Liu Zichuan;You Hua(Department of Medical Oncology,Affiliated Cancer Hospital&Institute of Guangzhou Medical University,Guangzhou Guangdong 510095,China)
出处 《遵义医科大学学报》 2020年第1期76-80,共5页 Journal of Zunyi Medical University
基金 国家自然科学基金资助项目(NO:81802723)。
关键词 膀胱癌 LncRNA 免疫治疗 基因表达谱 预测模型 bladder cancer LncRNA immunotherapy gene expression profile prognostic model
作者简介 通信作者:游华,男,博士,副教授,硕士生导师,研究方向:恶性淋巴瘤的发病及转移机制研究,E-mail:youhua307@163.com。
  • 相关文献

同被引文献22

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部