期刊文献+

微型齿轮的机器视觉检测系统设计 被引量:6

Design of Machine Vision Inspection System for Micro Gears
在线阅读 下载PDF
导出
摘要 微型齿轮在精密仪器设备中经常使用,其齿长的误差大小与整个仪器的精密准确性密切相关;传统微型齿轮检测以人工检测为主,人工检测存在检测精度低、量化不准确的问题;为了能够精确地计算齿长误差,并给出量化结果,文章提出一种基于机器视觉的微型齿轮齿长误差检测系统,先通过小波变换去除图像噪声,然后使用Radon变换算法矫正零件图像,再使用一种基于局部区域特征的三次曲线模型提取感兴趣区域亚像素边缘信息,并通过投影映射精确计算边界位置,最后计算齿轮中心点的动态极差并以此数据作为判断齿长是否合格的标准;实验结果表明,该方法精度可达到2μm,准确率可达到99%,单帧检测时间平均18ms,一个零件大约5s可以给出可靠的结论,该方法效率高,准确性好,能够满足工业检测的要求。 Micro gears are often used in precise instruments and devices,and the error of their tooth length is closely related to the precision of an entire instrument.Traditional gear detection is mainly performed manually,however,low precision and inaccurate quantification exist in manual detection.To accurately calculate the tooth length error and obtain quantified results,this paper proposed a system to detect the tooth length error of micro gears based on machine vision.In this system,firstly,the image noise was removed by wavelet transform;then Radon transform method was adopted to correct the part image;a cubic curve model based on local characteristics was employed to extract the sub-pixel edge information of an interested area,and the boundary location was accurately calculated through projection mapping;finally,the dynamic range of the gear center was calculated to judge the tooth length.The experimental results show that this method can reach a precision up to 2μm,an accuracy rate up to 99%,and an average singleframe detection time of 18 ms,as well as obtain reliable conclusions of a part about 5 s.With efficiency and accuracy,this method can meet the requirements of industrial detection.
作者 魏东亮 周迪斌 张家瑜 马建峰 解利军 Wei Dongliang;Zhou Dibin;Zhang Jiayu;Ma Jianfeng;Xie Lijun(Hangzhou International Service Engineering College,Hangzhou Normal University,Hangzhou 311121,China;Hangzhou Watch Co.,Ltd.,Hangzhou 310015,China;School of Aeronautics and Astronautics,Zhejiang University,Hangzhou 310028,China)
出处 《计算机测量与控制》 2020年第4期46-52,共7页 Computer Measurement &Control
基金 国家自然科学基金面上项目(11772301) 浙江省自然科学基金项目(LY17F020016) 杭州师范大学第二轮专业学位研究生课程教学案例库建设,工业智能制造项目(横向)。
关键词 齿轮检测 亚像素边缘 直线检测 动态极差 gear detection sub-pixel edges line detection dynamic range
作者简介 魏东亮(1987-),男,河南民权县人,硕士研究生,主要从事机器视觉和人工智能方向的研究。
  • 相关文献

参考文献13

二级参考文献86

共引文献162

同被引文献51

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部