期刊文献+

一种加速的软阈值算法及其应用

A fast soft thresholding algorithm and its application
在线阅读 下载PDF
导出
摘要 目的解决soft阈值算法收敛速度过慢,得到的解不够稀疏等问题。方法根据soft阈值算法以及L1正则化理论进行研究。结果改进并提出了加速soft阈值算法(即FSTA),同时将这种算法用于求解指数追踪问题。结论实验数据表明,这种算法在数值求解指数追踪问题时比经典LASSO算法更高效。 Purposes—To solve the problems that the convergence rate of the soft threshold algorithm is too slow and the obtained solution is not sparse enough.Methods—Soft threshold algorithm and L1 regularization theory are adopted to solve the above-mentioned problems.Result—The fast soft threshold algorithm(FSTA)was improved and proposed.At the same time,this algorithm is used to solve the exponential tracking problem.Conclusion—Experimental data shows that this algorithm is more efficient than the classical LASSO algorithm in the numerical solution of exponential tracking problems.
作者 王栋元 张成毅 WANG Dong-yuan;ZHANG Cheng-yi(School of Science, Xi’an Polytechnic University, Xi’an 710048, Shaanxi, China)
出处 《宝鸡文理学院学报(自然科学版)》 CAS 2020年第1期14-17,共4页 Journal of Baoji University of Arts and Sciences(Natural Science Edition)
基金 国家自然科学基金项目(11601409) 陕西省自然科学基础研究计划青年项目(2017JQ1029)。
关键词 加速soft阈值算法 LASSO算法 指数追踪 fast soft thresholding algorithm LASSO algorithm index tracing
作者简介 王栋元(1994-),男,陕西商洛人,在读硕士研究生,研究方向:智能计算,Email:313327581@qq.com;通讯作者:张成毅(1977-),男,山东临邑人,教授,博士,硕士生导师,研究方向:数值线性代数和稀疏优化,Email:cyzhang08@126.com。
  • 相关文献

参考文献3

二级参考文献140

  • 1Tibshirani R. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society: Series B (Methodological), 1996, 58(1): 267-288.
  • 2Breiman L. Better subset regression using the nonnegative garrote. Technometrics, 1995, 37(4) 373-384.
  • 3Frank L L E, Friedman J H. A statistical view of some chemometrics regression tools. Technometrics, 1993, 35 (2) 109-135.
  • 4Efron B, Hastie T, Johnstone I, et al. Least angle regression. The Annals of Statistics, 2004, 32(2): 407-499.
  • 5Yuan M, Lin Y. On the non-negative garrotte estimator. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2007, 69(2) : 143-161.
  • 6Xiong S. Some notes on the nonnegative garrote. Techno- metrics, 2010, 52(3): 349-361.
  • 7Fu W J. Penalized regressions: The bridge versus the Lasso. Journal of Computational and Graphical Statistics, 1998, 7(3) : 397-416.
  • 8Knight K, Fu W. Asymptotics for Lasso-type estimators. Annals of Statistics, 2000, 28(5): 1356-1378.
  • 9Huang J, Horowitz J L, Ma S. Asymptotic properties of bridge estimators in sparse high-dimensional regression models. The Annals of Statistics, 2008, 36(2) : 587-613.
  • 10Friedman J, Hastie T, H6fling H, et al. Pathwise coordinate optimzation. The Annals o{ Applied Statistics, 2007, 1(2) : 302-332.

共引文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部