期刊文献+

基于CNN深度学习模型的大学生课堂行为检测研究 被引量:10

Research on college students’classroom behavior detection based on CNN deep learning model
在线阅读 下载PDF
导出
摘要 为了切实提高职业院校教师课堂教学质量,对学生在专业课程课堂中表现出的各类上课行为进行检测分析,从而量化判断学生是否专注于课堂和教师的实际教学效果,达到提高教师课堂教学质量和督促学生专注课堂学习的目的。本文提出将卷积神经网络CNN深度学习模型应用于学生课堂行为检测识别,实现对学生是否专注课堂学习的行为进行分类。实验证明,该卷积神经网络能够对检测目标特征进行深度特征提取,并且对学生上课中的课堂行为检测取得良好的识别效果。 In order to improve the classroom teaching quality of teachers in vocational colleges,the various classroom behaviors of students in professional courses are tested and analyzed,which could quantify whether students focus on the classroom and the actual teaching effect of teachers,therefore achieve the purpose of improving the classroom teaching quality of teachers and supervising students to concentrate on classroom learning.The paper proposes applying the Convolutional Neural Network in-depth learning model to the detection and recognition of students’classroom behavior,so as to classify whether the students are focused on classroom learning.Experiments show that the Convolution Neural Network can extract the depth features of the detected target features,and achieve good recognition results for students’classroom behavior detection in class.
作者 左国才 苏秀芝 王海东 吴小平 ZUO Guocai;SU Xiuzhi;WANG Haidong;WU Xiaoping(Hunan Vocational Institute of Software,Xiangtan Hunan 411100,China;Hunan University,Changsha 410082,China)
出处 《智能计算机与应用》 2020年第2期158-160,共3页 Intelligent Computer and Applications
基金 湖南省教育科学规划课题研究成果(XJK19CZY018)。
关键词 卷积神经网络 深度学习 课堂行为 Convolutional Neural Network deep learning classroom behavior
作者简介 左国才(1978-),女,硕士,副教授、高级工程师,主要研究方向:计算机视觉、深度学习。
  • 相关文献

参考文献4

二级参考文献58

  • 1Fujiyoshi H, Lipton A J, Kanade T. Real-time human mo- tion analysis by image skeletonization. IEICE Transactions on Information and Systems, 2004, 87-D(1): 113-120.
  • 2Chaudhry R, Ravichandran A, Hager G, Vidal R. His- tograms of oriented optical flow and Binet-Cauchy kernels on nonlinear dynamical systems for the recognition of hu- man actions. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009. 1932-1939.
  • 3Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of the 2005 IEEE Con- ference on Computer Vision and Pattern Recognition. San Diego, CA, USA: IEEE, 2005. 886-893.
  • 4Lowe D G. Object recognition from local scale-invariant fea- tures. In: Proceedings of the 7th IEEE International Confer- ence on Computer Vision. Kerkyra: IEEE, 1999. 1150-1157.
  • 5Schuldt C, Laptev I, Caputo B. Recognizing human actions: a local SVM approach. In: Proceedings of the 17th In- ternational Conference on Pattern Recognition. Cambridge: IEEE, 2004. 32-36.
  • 6Dollar P, Rabaud V, Cottrell G, Belongie S. Behavior recog- nition via sparse spatio-temporal features. In: Proceedings of the 2005 IEEE International Workshop on Visual Surveil- lance and Performance Evaluation of Tracking and Surveil- lance. Beijing, China: IEEE, 2005.65-72.
  • 7Rapantzikos K, Avrithis Y, Kollias S. Dense saliency-based spatiotemporal feature points for action recognition. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009. 1454-1461.
  • 8Knopp J, Prasad M, Willems G, Timofte R, Van Gool L. Hough transform and 3D SURF for robust three dimensional classification. In: Proceedings of the llth European Confer- ence on Computer Vision (ECCV 2010). Berlin Heidelberg: Springer. 2010. 589-602.
  • 9Klaser A, Marszaeek M, Schmid C. A spatio-temporal de- scriptor based on 3D-gradients. In: Proceedings of the 19th British Machine Vision Conference. Leeds: BMVA Press, 2008. 99.1-99.10.
  • 10Wang H, Ullah M M, Klaser A, Laptev I, Schmid C. Evalua- tion of local spatio-temporal features for action recognition. In: Proceedings of the 2009 British Machine Vision Confer- ence. London, UK: BMVA Press, 2009. 124.1-124.11.

共引文献204

同被引文献90

引证文献10

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部