期刊文献+

考虑服从率的道路网络交通流逐日演化博弈模型 被引量:4

Day-to-day evolutionary game model of road network traffic flow considering traveler’s compliant rate
在线阅读 下载PDF
导出
摘要 在刻画出行者的日常路径选择过程中,出行者的异质性与有限理性问题逐渐突出,而以往的交通流演化研究大多将出行者根据是否装配先进出行者信息系统(ATIS)分为两类,演化稳定后分别达到UE与SUE状态,但没有考虑出行者对信息的服从率。因此,研究中根据出行者对静态信息的服从率将出行者分为三类,使用累积前景理论刻画出行者的得失心理行为,建立了基于马尔可夫动态模拟出行者路径选择的演化博弈模型。在算例试验中,分析了路径调整率分别取固定值和变动值条件下的演化过程,当路径调整率的取值随演化过程递减时,出行者由更期望改变自己的路径选择逐渐向保持原有路径选择改变,这能更加体现出行者的有限理性,其路径演化过程也更加符合实际。 In the process of describing traveler’s routine choice,the heterogeneity and bounded rationality of travelers have become increasingly prominent.In the past,most studies on the traffic flow evolution divided travelers into two categories according to whether travelers were equipped with Advanced Traveler Information System(ATIS).After the evolution was stable,they reached the UE and SUE states respectively,but those studies did not consider the traveler’s compliance rate with information.Therefore,according to the compliance rate of static information,the travelers are divided into three categories.The Cumulative Prospect Theory is used to describe the behavior of the traveler’s gains and losses.An evolutionary game model based on Markov dynamic simulation of traveler’s route choice is established.In the experiment of the example,the evolution process of the path adjustment rate under the condition of fixed value and variable value is analyzed.When the value of the path adjustment rate decreases with the evolution process,travelers gradually change their path choice from thinking more about changing their own path choice to keeping the original path choice.This can further reflect the bounded rationality of the traveler,and the path evolution process is more realistic.
作者 黄中祥 陈思臣 HUANG Zhong-xiang;CHEN Si-chen(School of Traffic and Transportation Engineering,Changsha University of Science&Technology,Changsha 410114,China)
出处 《长沙理工大学学报(自然科学版)》 CAS 2020年第1期8-15,共8页 Journal of Changsha University of Science and Technology:Natural Science
基金 国家自然科学基金资助项目(51338002,51978082)。
关键词 逐日演化 出行者异质性 累积前景理论 马尔可夫演化动态 day-to-day evolution model traveler’s heterogeneity Cumulative Prospect Theory Markov evolutionary dynamic
作者简介 通讯作者:黄中祥(1965-),男,湖南汨罗人,长沙理工大学教授,主要从事交通运输规划与管理等方面的研究。E-mail:mehzx@126.com。
  • 相关文献

参考文献6

二级参考文献55

  • 1黎茂盛,王炜,史峰.降级路网的认知及交通流平衡分析模型[J].中国公路学报,2006,19(6):87-91. 被引量:13
  • 2沈家军,王炜,陈峻.基于路段及停车阻抗的停车换乘系统优化平衡模型[J].交通运输工程学报,2007,7(2):80-83. 被引量:4
  • 3HUANG H J, LI Z C. A Multiclass, Multicriteria Logit-based Traffic Equilibrium Assignment Model Under ATIS[J]. European Journal of Operational Research,2007,176(3):1464-1477.
  • 4JIN W I.. A Dynamical System Model of the Traffic Assignment Problem [J]. Transportation Research Part B,2007,41(1) :32-48.
  • 5CANTARELLA G E, CASCETTA E. Dynamic Processes and Equilibrium in Transportation Network: Towards a Unifying Theory[J]. Transportation Science, 1995,29(4):305-329.
  • 6HAZELTON M I.,WATLING D P. Computation of Equilibrium Distributions of Markov Traffic Assignment Models[J]. Transportation Science, 2004, 38 (3) :331-342.
  • 7YANG H, HUANG H J. The Muhikclass, Muhi-criteria Traffic Network Equilibrium and System Optimum Problem[J]. Transportation Research Part B, 2004,38(1) : 1-15.
  • 8MAHMASSANI H S,JAYAKRISHNAN R. System Performance and User Response Under Real Time In formation in a Congested Traffic Corridor[J]. Trans portation Research Part B, 1991,25(5) :293-307.
  • 9ADLER J I.,BI.UE V J. Toward the Design of Intelligent Traveler lnformation Systems[J]. Transportation Research Part C,1998,6(3) :157 172.
  • 10HAI.I. R W. Non recurrent Congestion: How Big Is the Problem? Are Traveler Systems the Solution[J]. Transportation Research Part C, 1993,1 ( 1 ) : 89-103.

共引文献31

同被引文献38

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部