摘要
重介质悬浮液密度是决定重介质选煤产品质量的重要影响因素,但由于重介质选煤运行过程是一个时变的强非线性过程,导致根据实时工况的变化在线调整重介质悬浮液密度异常困难.为此,本文针对重介质选煤过程特性,提出一种模型与数据混合驱动的自适应运行反馈控制方法,用于在线调整重介质悬浮液密度设定值.所提方法首先将重介质选煤过程分解为低阶线性模型和未建模动态非线性项两部分;进而针对线性部分,将PI控制与一步最优控制相结合,设计了模型驱动的自适应PI控制器;并利用随机向量函数链接网络设计了数据驱动的虚拟未建模动态补偿器;最后分析了闭环系统稳定性,并在基于MATLAB和Unity3D的虚拟现实仿真平台上进行了对比仿真实验,验证了所提方法的有效性.
Density of dense medium is a key factor for the quality of coal preparation products.Unfortunately,the dense medium coal preparation(DMCP)process has time varying and strongly nonlinear characteristics,which make it more difficult to adjust the density of dense medium online according to the current operation condition.To tackle this issue,this paper proposes a model-data hybrid driven adaptive operational feedback control approach for DMCP process.To adjust the set-point of density of dense medium online,the DMCP process has been first divided into two parts:the loworder linear model and nonlinear unmodeled dynamics term.For the linear model,a model-driven adaptive PI controller is developed by combining PI control method with one-step optimal control.A data-driven virtual unmodeled dynamics compensator is proposed based on a random vector function link network.The stability of closed-loop system is analyzed,and comparative simulations are conducted on MATLAB and Unity3D based virtual reality simulation platform to verify the effectiveness of proposed method.
作者
代伟
张凌智
褚菲
马小平
DAI Wei;ZHANG Ling-zhi;CHU Fei;MA Xiao-ping(School of Information and Control Engineering,China University of Mining Technology,Xuzhou Jiangsu 221116,China;The State Key Laboratory of Synthetical Automation for Process Industries,Northeastern University,Shenyang Liaoning 110819,China)
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2020年第2期283-294,共12页
Control Theory & Applications
基金
国家自然科学基金项目(61603393,61873272)
江苏省自然科学基金项目(BK20160275)
中国博士后科学基金项目(2015M581885,2018T110571)
东北大学流程工业综合自动化国家重点实验室开放课题(PAL–N201706)资助.
关键词
重介质选煤
自适应
运行反馈控制
未建模动态
dense medium coal preparation
adaptive
operational feedback control
unmodeled dynamics
作者简介
通信作者:代伟,博士,副教授,硕士生导师,目前研究方向为复杂工业过程的建模、运行优化与运行反馈控制、强化学习等,E-mail:weidai@cumt.edu.cn,Tel.:+8613952235853;张凌智,硕士研究生,目前研究方向为运行优化与运行反馈控制、强化学习等,E-mail:zhang_lingzhi@hotmail.com;褚菲,博士,副教授,硕士生导师,目前研究方向为复杂工业过程的建模、机器学习等,E-mail:chufeizhufei@sina.com;马小平,博士,教授,博士生导师,目前研究方向为控制理论及应用、网络控制、计算机技术及应用等,E-mail:xpma@cumt.edu.cn.