期刊文献+

基于ACO-BP神经网络的光伏系统发电功率预测 被引量:15

Photovoltaic System Generating Efficiency Forecasting Based on ACO-BP Neural Network
在线阅读 下载PDF
导出
摘要 为准确预测光伏发电量,减少并网光伏对大电网的影响,引入相似日概念,对夏季预测日的平均温度、最高温度、最低温度以及天气类型进行分析。在历史数据中选取具有相似天气特征的发电功率数据和天气数据作为神经网络的训练样本,建立ACO-BP神经网络光伏发电功率预测模型,并将预测结果与传统BP神经网络和PSO-BP神经网络预测结果相比较。实验结果表明,该模型具有较高的预测精度。 To accurately predict photovoltaic power generation and reduce the impact of grid-connected photovoltaic on the large power grid,this paper introduces the concept of similar day,analyzes average,maximum and minimum temperature and weather type of summer forecastday,and selects the power generation data and the weather data with similar weather characteristics as training samples of neural network from the historical data.Based on the analysis of the characteristics of the photovoltaic power generation and its affecting factors,an ACO-BP neural network photovoltaic power prediction model is established,and the prediction results are compared with the traditional BP neural network and PSO-BP neural network prediction results.Experimental results show that the model is of high prediction accuracy.
作者 陈智雨 陆金桂 CHEN Zhiyu;LU Jingui(School of Mechanical and Power Engineering,Nanjing University of Technology,Nanjing 211816,China)
出处 《机械制造与自动化》 2020年第1期173-175,187,共4页 Machine Building & Automation
关键词 光伏发电系统 光伏发电功率预测 神经网络 蚁群优化 photovoltaic power generation system photovoltaic generating efficiency forecasting neural network ant colony optimization
作者简介 第一作者:陈智雨(1994-),男,江苏扬州人,硕士研究生,研究方向为光伏发电技术。
  • 相关文献

参考文献3

二级参考文献22

共引文献59

同被引文献147

引证文献15

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部