期刊文献+

基于TensorFlow及LSTM模型的室内行为识别算法的研究与实现 被引量:1

Indoor Activity Recognition Algorithm Based on TensorFlow and LSTM Model
在线阅读 下载PDF
导出
摘要 智能手机的功能越来越复杂,最新的智能手机配备许多各式各样且功能强大的传感器,这些传感器包括GPS传感器、视觉传感器(如摄像头)、听觉传感器(如耳机)、光传感器、温度传感器、方向传感器(如指南针)和加速度传感器(如加速计),它们在使用中所产生的大量数据为我们进行室内行为识别分析提供机会。通过智能手机加速度传感器、重力传感器和方向传感器,基于深度学习的方式,对智能手机传感器采集的数据进行标准化处理。分别运用Ten sorFlow及LSTM模型,根据深度特征学习方法实现不同活动的特征提取,进行活动的分类,最终实现对六大类人体活动(走、坐、站、上楼、下楼、慢跑)识别。 Mobile devices are becoming increasingly sophisticated and the latest generation of smartphones now incorporates many diverse and power ful sensors.These sensors include GPS sensors,vision sensors(i.e.,cameras),audio sensors(i.e.,microphones),light sensors,temperature sensors,direction sensors(i.e.,magnetic compasses),and acceleration sensors(i.e.,accelerometers).In this paper we describe and evalu ate a indoor activity recognition system based on smartphone accelerometers and LSTM model,to implement the system we collected la beled accelerometer data from users as they performed daily activities such as walking,climbing stairs,sitting,and standing,then aggregat ed this time series data into examples that summarize the user activity over 10 second intervals.We then used the resulting training data to induce a predictive model for activity recognition.
作者 董海山 徐晓姗 郑春红 DONG Hai-shan;XU Xiao-shan;ZHENG Chun-hong(School of Information,Qingdao Technical College,Qingdao 266555)
出处 《现代计算机》 2020年第6期55-59,共5页 Modern Computer
基金 山东省高等学校科技计划项目(No.J18KB148)。
关键词 TensorFlow LSTM模型 室内行为识别 TensorFlow LSTM Model Indoor Activity Recognition
作者简介 董海山(1981-),男,山东青岛人,硕士,讲师,研究方向为深度学习。
  • 相关文献

参考文献1

二级参考文献51

  • 1Fujiyoshi H, Lipton A J, Kanade T. Real-time human mo- tion analysis by image skeletonization. IEICE Transactions on Information and Systems, 2004, 87-D(1): 113-120.
  • 2Chaudhry R, Ravichandran A, Hager G, Vidal R. His- tograms of oriented optical flow and Binet-Cauchy kernels on nonlinear dynamical systems for the recognition of hu- man actions. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009. 1932-1939.
  • 3Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of the 2005 IEEE Con- ference on Computer Vision and Pattern Recognition. San Diego, CA, USA: IEEE, 2005. 886-893.
  • 4Lowe D G. Object recognition from local scale-invariant fea- tures. In: Proceedings of the 7th IEEE International Confer- ence on Computer Vision. Kerkyra: IEEE, 1999. 1150-1157.
  • 5Schuldt C, Laptev I, Caputo B. Recognizing human actions: a local SVM approach. In: Proceedings of the 17th In- ternational Conference on Pattern Recognition. Cambridge: IEEE, 2004. 32-36.
  • 6Dollar P, Rabaud V, Cottrell G, Belongie S. Behavior recog- nition via sparse spatio-temporal features. In: Proceedings of the 2005 IEEE International Workshop on Visual Surveil- lance and Performance Evaluation of Tracking and Surveil- lance. Beijing, China: IEEE, 2005.65-72.
  • 7Rapantzikos K, Avrithis Y, Kollias S. Dense saliency-based spatiotemporal feature points for action recognition. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009. 1454-1461.
  • 8Knopp J, Prasad M, Willems G, Timofte R, Van Gool L. Hough transform and 3D SURF for robust three dimensional classification. In: Proceedings of the llth European Confer- ence on Computer Vision (ECCV 2010). Berlin Heidelberg: Springer. 2010. 589-602.
  • 9Klaser A, Marszaeek M, Schmid C. A spatio-temporal de- scriptor based on 3D-gradients. In: Proceedings of the 19th British Machine Vision Conference. Leeds: BMVA Press, 2008. 99.1-99.10.
  • 10Wang H, Ullah M M, Klaser A, Laptev I, Schmid C. Evalua- tion of local spatio-temporal features for action recognition. In: Proceedings of the 2009 British Machine Vision Confer- ence. London, UK: BMVA Press, 2009. 124.1-124.11.

共引文献133

同被引文献13

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部