期刊文献+

基于机器视觉的轴承字符识别技术的研究 被引量:10

Research on Bearing Character Recognition Technology Based on Machine Vision
在线阅读 下载PDF
导出
摘要 针对轴承上字符的特点,提出了一种基于机器视觉的轴承字符自动识别方法,并利用C++和OpenCV计算机视觉库开发了识别软件。对轴承字符图像进行阈值分割,使用Sobel算子提取边缘轮廓,然后使用改进的圆检测算法定位环形字符区域,在经过极坐标变换后进行字符分割。最后提取改进的字符特征,使用支持向量机分类器进行字符识别。试验结果表明:该方法能有效识别轴承字符,而且识别率达到了95%以上,具有广阔的应用前景。 According to the characteristics of bearing characters,an automatic identification method based on machine vision is proposed.The detection software was developed on C++and OpenCV computer vision library.Firstly,the bearing character image was segmented by threshold,then the edge contour was extracted by Sobel operator,then the circular character region was located by using the improved circle detection algorithm,and character segmentation was performed after the polar coordinate transformation.Finally,the improved character features were extracted,and the support vector machine(SVM)classifier was used for character recognition.Experimental results show that the method can effectively identify bearing characters,and the recognition rate reaches over 95%,which has broad application prospects.
作者 任永强 潘浩 李广涛 REN Yongqiang;PAN Hao;LI Guangtao(School of Mechanical and Engineering,Hefei University of Technology,Hefei Anhui 230009,China)
出处 《机床与液压》 北大核心 2020年第5期11-14,共4页 Machine Tool & Hydraulics
基金 国家重点研发项目(2018YFB0104600) 安徽省科技重大专项(17030901062)。
关键词 机器视觉 圆检测 字符识别 支持向量机 Machine vision Circle detection Character recognition Support vector machine
作者简介 任永强(1968-),男,博士,副教授,研究方向为精密测量、汽车成套自动化装备及测控研究。E-mail:342474609@qq.com。
  • 相关文献

参考文献4

二级参考文献27

  • 1鲜飞.BGA技术成为现代组装技术的主流[J].印制电路信息,2004,12(7):63-65. 被引量:4
  • 2郭斯羽,张煦芳.一种基于模型的自适应阈值分割算法[J].浙江大学学报(工学版),2005,39(12):1950-1953. 被引量:6
  • 3韩宝玲,罗庆生.机器人视觉目标数字图像实时处理及分割[J].工程图学学报,2006,27(5):75-79. 被引量:4
  • 4刘俊承,王淼鑫,彭一准.一种基于视觉信息的自主搬运机器人[J].科学技术与工程,2007,7(3):314-319. 被引量:13
  • 5RAUS M, KREFT L. Reading car license plates by the use of artificial neural networks [A]. Proceedings of IEEE 38th Midwest Symposium on Circuits and Systems[C]. Rio de Janeiro: IEEE, 1995: 538-541.
  • 6VAPNIK V N. The nature of statistical learning theory[M]. New York:Springer Verlag,1995.
  • 7GORDAN M, KOTROPOULOS C, PITAS I. Visual speech recognition using support vector machines [A].2002 14th International Conference on Digital Signal Processing [C]. [s. l]: IEEE, 2002:1093 - 1096.
  • 8BASU A, WATTERS C, SHEPHERD M. Support vector machines for text categorization [A]. Proceedings of the 36th Annual Hawaii International Conference on System Sciences[C]. Hawaii:[s. n.], 2003, 103 - 109.
  • 9VAPNIK V N. Statistical learning theory [M]. New York: Wiley, 1998.
  • 10Gander W ,Golub G H, Strebel R, et al. Least-squares fitting of circles and ellipses [ J ]. BIT Numerical Mathematics, 1994,34 (4) :558 -578

共引文献229

同被引文献95

引证文献10

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部