期刊文献+

基于尺度注意力网络的遥感图像场景分类 被引量:25

Remote sensing image scene classification based on scale-attention network
在线阅读 下载PDF
导出
摘要 针对卷积神经网络(CNN)平等地对待输入图像中潜在的对象信息和背景信息,而遥感图像场景又存在许多小对象和背景复杂的问题,提出一种基于注意力机制和多尺度特征变换的尺度注意力网络模型。首先,开发一个快速有效的注意力模块,基于最优特征选择生成注意力图;然后,在ResNet50网络结构的基础上嵌入注意力图,增加多尺度特征融合层,并重新设计全连接层,构成尺度注意力网络;其次,利用预训练模型初始化尺度注意力网络,并使用训练集对模型进行微调;最后,利用微调后的尺度注意力网络对测试集进行分类预测。该方法在实验数据集AID上的分类准确率达到95.72%,与ArcNet方法相比分类准确率提高了2.62个百分点;在实验数据集NWPU-RESISC上分类准确率达到92.25%,与IORN方法相比分类准确率提高了0.95个百分点。实验结果表明,所提方法能够有效提高遥感图像场景分类准确率。 The Convolutional Neural Network(CNN)treats the potential object information and background information equally in the input image.However,there are many small objects and complex background in remote sensing scene images.To solve the problem above,a scale-attention network was proposed based on attention mechanism and multi-scale feature transformation.Firstly,a fast and effective attention module was developed,and the attention map was generated based on optimal feature selection.Then,with the attention map embedded,the multi-scale feature fusion layer added and the fully connected layer redesigned on the basis of ResNet50 network,a scale attention network was proposed.Secondly,the pretraining model was used to initialize the scale-attention network,and the training set was employed for the fine-tuning of the network.Finally,the fine-tuned scale-attention network was used to realize the classification prediction of test set.The classification accuracy of the proposed method on the AID scene dataset is 95.72%,which is 2.62 percentage points higher than that of ArcNet.On the NWPU-RESISC scene dataset,this method achieves classification accuracy of 92.25%,0.95 percentage points higher than that of IORN(Improved Oriented Response Network).The experimental results demonstrate that the proposed method is able to improve the classification accuracy of remote sensing image scenes.
作者 边小勇 费雄君 穆楠 BIAN Xiaoyong;FEI Xiongjun;MU Nan(School of Computer Science and Technology,Wuhan University of Science and Technology,Wuhan Hubei 430065,China;Institute of Big Data Science and Engineering,Wuhan University of Science and Technology,Wuhan Hubei 430065,China;Hubei Key Laboratory of Intelligent Information Processing and Real-time Industrial System(Wuhan University of Science and Technology),Wuhan Hubei 430065,China)
出处 《计算机应用》 CSCD 北大核心 2020年第3期872-877,共6页 journal of Computer Applications
基金 国家自然科学基金资助项目(61572381,61501337) 湖北省自然科学基金资助项目(2018CFB575)~~
关键词 遥感图像场景分类 深度学习 多尺度特征变换 注意力机制 残差网络 微调 remote sensing image scene classification deep learning multi-scale feature transformation attention mechanism residual network fine-tuning
作者简介 通信作者:边小勇(1976-),男,江西吉安人,副教授,博士,主要研究方向:遥感图像场景分类、特征学习,电子邮箱xyongwh04@163.com;费雄君(1996-),男,湖北黄冈人,硕士研究生,主要研究方向:计算机视觉、深度学习;穆楠(1991-),男,河南南阳人,助理教授,博士,主要研究方向:计算机视觉、显著性检测。
  • 相关文献

参考文献2

二级参考文献12

共引文献82

同被引文献175

引证文献25

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部