期刊文献+

Zr-0.2Cu-xNb合金的显微组织及腐蚀行为

Microstructure and Corrosion Behavior of Zr-0.2Cu-xNb Alloys
原文传递
导出
摘要 对Zr-0.2Cu-x Nb(质量分数x=0.2,0.5,1.0,2.5)合金进行真空β相油淬、冷轧及退火处理,并在静态高压釜中进行过热蒸汽腐蚀试验,最后采用扫描电镜和透射电镜研究了合金及其腐蚀生成的氧化膜的显微组织。结果表明,随着Nb含量的增加,Zr-0.2Cu-x Nb合金中Zr2Cu第二相的数量逐渐减少,而β-Zr第二相数量逐渐增加;合金中尺寸较小的Zr2Cu第二相对耐腐蚀性能有利;β-Zr第二相在氧化过程中会促进氧化膜微裂纹的产生,降低合金的耐腐蚀性能。Zr-0.2Cu-x Nb合金中Nb含量接近其在α-Zr中最大固溶度时,合金具有最优的耐腐蚀性能。 Zr-0.2Cu-xNb(x=0.2, 0.5, 1.0, 2.5) alloys were prepared by vacuum β-phase oil quenching, cold-rolling deformation and annealing. The superheated steam corrosion test was carried out in a static autoclave. The microstructure of the alloy and the oxide film formed by corrosion was studied by scanning electron microscopy and transmission electron microscopy. The results show that with the increasing of Nb content, the number of Zr2Cu phases in Zr-0.2Cu-xNb alloys decreases gradually, while the number of β-Zr phases increases gradually. The second phase of Zr2 Cu with small size is beneficial to corrosion resistance. The β-Zr second phase promotes the generation of micro-cracks in the oxide film during oxidation and reduces the corrosion resistance of the alloy. When the Nb content in Zr-0.2Cu-xNb alloy is close to its maximum solid solubility in α-Zr, the alloy has the best corrosion resistance.
作者 王杰亿 李强 连奥杰 梁雪 彭剑超 姚美意 Wang Jieyi;Li Qiang;Lian Aojie;Liang Xue;Peng Jianchao;Yao Meiyi(Laboratory for Microstructure of Material Science and Engineering,Shanghai University,Shanghai,200444,China;Institute of Materials,Shanghai University,Shanghai,200072,China)
出处 《核动力工程》 EI CAS CSCD 北大核心 2020年第1期43-48,共6页 Nuclear Power Engineering
关键词 锆合金 合金元素Nb 显微组织 耐腐蚀性能 Zirconium alloy Alloying element Nb Microstructure Corrosion resistance
作者简介 王杰亿(1993—),女,硕士研究生,现主要从事浩合金耐腐蚀性能研究,E-mail:Wangjieyi93@foxmail.com;通讯作者:李强,E-mail:liqiang@shu.edu.cn。
  • 相关文献

参考文献9

二级参考文献35

  • 1周邦新,李强,姚美意,刘文庆,褚玉良.锆-4合金在高压釜中腐蚀时氧化膜显微组织的演化[J].核动力工程,2005,26(4):364-371. 被引量:48
  • 2周邦新,李强,刘文庆,姚美意,褚于良.水化学及合金成分对锆合金腐蚀时氧化膜显微组织演化的影响[J].稀有金属材料与工程,2006,35(7):1009-1016. 被引量:45
  • 3Yang W D. Reactor Materials Science. Beijing: Atomic Energy Press, 2006:19.
  • 4Comstock R J, Schoenberger G, Sable G P. In: Bradley E R, Sabol G P, eds., Zirconium in the Nuclear Industry. Philadelphia: American Society for Testing and Materials, 1996:710.
  • 5Ramasubramanian N, Balakrishnan P V. In: Garde A M, Bradley E R, eds., Zirconium in the Nuclear Indus- try: Tenth International Symposium, ASTM STP 1245, Philadelphia: American Society for Testing and Materials, 1994:378.
  • 6Anada H, Takeda K. In: Bradley E R, Sabol G P, eds., Zir- conium in the Nuclear Industry: Eleventh International Symposium, ASTM STP 1295, Philadelphia: American Society for Testing and Materials, 1996:35.
  • 7Perkins R A, Busch R A. In: Eucken C M, Garde A M, eds., Zirconium in the Nuclear Industry: Ninth In- ternational Symposium, ASTM STP 1132, Philadelphia:American Society for Testing and Materials, 1991:595.
  • 8Shebaldov P V, Peregud M M, Nikulina A V, Bibilashvili Y K, Lositski A F, Kuz'menko N V, Belov V I, Novoselov A E. In: Sabol G P, Moan G D, eds., Zirconium in the Nu- clear Industry: Twelfth International Symposium, ASTM STP 135,~, West Conshohocken, PA: American Society for Testing and Materials, 2000:545.
  • 9Kim H G, Jeoag Y H, Kim T H. J Nucl Mater, 2004; 326: 125.
  • 10Jeong Y H, Lee K O, Kim H G. J Nucl Mater, 2002; 302: 9.

共引文献112

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部