期刊文献+

基于多种混合模型的径流预测研究 被引量:75

Runoff prediction based on multiple hybrid models
在线阅读 下载PDF
导出
摘要 变化环境下径流的波动不断加大,给径流的精准预报带来新的挑战。基于“分解-合成”策略的混合径流预报模型来提高预报精度是当前研究的热点之一。以往研究聚焦在单一的混合预报模型而忽视了它们的适用性研究。基于此,以渭河流域为例,在优选多元线性回归(MLR)、人工神经网络(ANN)和支持向量机(SVM)单一预报模型的基础上,分别基于经验模态分解(EMD)、集合经验模态分解(EEMD)和小波分解(WD)构建了多种混合模型,并融合了大气环流异常因子的信息。结果表明:(1)SVM模型预测精度高于ANN和MLR;(2)混合预测模型预测精度均高于单一模型,混合模型中WD-SVM的预测精度优于EMD-SVM和EEMD-SVM;(3)融合大气环流异常因子后WD-SVM模型预测精度最高,对极值预报精度的提高较为明显。 The high variability of runoff has brought a new challenge to accurate runoff forecasting in a changing environment.Hybrid runoff forecasting models based on the“decomposition-synthesis”strategy to improve the accuracy of forecasting has become one of the research hotspots.Most previous studies focused on the application of single hybrid model in runoff forecasting however ignoring the applicability of different hybrid models.To this end,the Weihe River Basin is taken as case study,multiple linear regression(MLR),artificial neural network(ANN)and support vector machine(SVM)single prediction models were optimally selected.Then,the results of the hybrid prediction model using wavelet decomposition(WD)were compared with empirical mode decomposition(EMD)and ensemble empirical mode decomposition(EEMD)techniques.The atmospheric circulation anomaly factors was incorporated into the hybrid models for further improve the accuracy of runoff forecasting.The achieved results demonstrate that:(1)the predic⁃tion accuracy of SVM model is higher than that of ANN and MLR;(2)the prediction accuracy of hybrid models is higher than that of single models;(3)the prediction accuracy of WD-SVM is better than EMD-SVM and EEMD-SVM,which has been further improved by integrated with the information of atmo⁃spheric circulation anomaly factors.Especially,the improvement of prediction accuracy is more obvious at the extreme point.
作者 梁浩 黄生志 孟二浩 黄强 LIANG Hao;HUANG Shengzhi;MENG Erhao;HUANG Qiang(State Key Laboratory Base of Eco-Hydraulic Engineering in Arid Area of Xi’an university of technology State,Xi’an 710048,China)
出处 《水利学报》 EI CSCD 北大核心 2020年第1期112-125,共14页 Journal of Hydraulic Engineering
基金 国家自然科学基金项目(51709221) 中国水利水电科学研究院流域水循环模拟与调控国家重点实验室开放研究基金项目(IWHR-SKL-KF201803) 河海大学水文水资源与水利工程科学国家重点实验室“一带一路”水与可持续发展科技基金项目(2018490711)。
关键词 径流预报 混合预测模型 支持向量机 小波分解 大气环流异常因子 runoff prediction hybrid prediction models support vector machine wavelet decomposition pre⁃diction anomalous atmospheric circulation factors
作者简介 梁浩(1995-),硕士,主要从事水文水资源研究。E-mail:1250145370@qq.com;通讯作者:黄生志(1988-),博士,副教授,主要从事水文预报与干旱的形成及传播机理研究。E-mail:huangshengzhi7788@126.com。
  • 相关文献

参考文献33

二级参考文献415

共引文献1226

同被引文献776

引证文献75

二级引证文献308

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部