摘要
多普勒计程仪(DVL)在水下导航系统应用越来越广泛。当海底环境发生变化时,DVL会发生数据刷新频率不稳定,数据无效等情况。为了提高导航的可靠性,本文提出了一种变训练集的SVR回归方法,对DVL的数据进行预测。根据水下机器人的速度变化率和加速度变化率调节训练集大小。把捷联惯导(SINS)的东向和北向速度作为输入,DVL东向和北向速度作为输出对模型进行训练。根据SINS的数据输出频率,选取合适的预测数据输出频率进行仿真。仿真发现算法有效地提高了SINS/DVL组合导航的精度,并在DVL数据无效时,有效地抑制误差,提高导航系统的稳定性。
DVL is more and more widely used in underwater navigation system. When the seabed environment changes, the data refresh frequency of DVL is unstable and the data is invalid. In order to improve the reliability of navigation, this paper proposes a SVR regression method of variable training set to predict DVL data. The training set size is adjusted according to the change of velocity rate and acceleration rate of underwater robot. Taking the east and north velocity of SINS as input, DVL’s east and north velocity as output, the model is trained. We select the appropriate predictive data output frequency that relys on the data out frequency of SINS. It is found that SINS/DVL integrated navigation precision is effectively improved through simulation. When the DVL data is invalid, the error is effectively suppressed and the stability of the navigation system is improved.
作者
魏奥博
郑荣
WEI Ao-bo;ZHENG Rong(State Key Laboratory of Robotics,Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110016,China;Institutes for Robotics and Intelligent Manufacturing,Chinese Academey of Sciences,Shenyang 110016,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处
《舰船科学技术》
北大核心
2020年第1期161-167,共7页
Ship Science and Technology
基金
中国科学院装备预研联合基金资助项目(6141A01061601)
作者简介
魏奥博(1994−),男,硕士研究生,研究领域为水下机器人导航控制。