期刊文献+

基于卷积神经网络的图像分割算法 被引量:1

A convolutional neural network-based image segmentation algorithm
在线阅读 下载PDF
导出
摘要 在计算机视觉领域中,图像分割技术为基础的部分之一,图像分割的精确与否对后续图像处理存在重要的影响。对全卷积网络进行改进,将卷积网络、多尺度特征提取和空洞卷积进行结合,将不同卷积层抓取到的具有更强描述力的特征进行融合,并且增加网络的层数来提升网络的泛化能力。对网络在CamVid数据集上进行测试,其测试结果与FCN-16s的测试结果进行对比,证明了网络的精确度有所提升。 In the field of computer vision pne of the basic parts of image segmentation technology,the accuracy of image segmentation has an important impact on subsequent image processing.In this paper,the whole convolutional network is improved by combining the convolutional network,multi-scale feature extraction and hole convolution.Also,different convolutional layers are captured to merge with more descriptive features in which the number of layers of the network is increased.In addition,we also improve the generalization of the network.We conduct the experiments based on the CamVid dataset.The test results are compared with the test results of FCN-16 s,which proves that the accuracy of the network is improved.
作者 李轩 孙昕楠 LI Xuan;SUN Xin-nan(School of Electronic and Information Engineering,Shenyang Aerospace University,Shenyang 110136,China)
出处 《沈阳航空航天大学学报》 2020年第1期50-57,共8页 Journal of Shenyang Aerospace University
关键词 图像分割 神经网络 空洞卷积 多尺度 ResNet image segmentation neural netw ork cavity convolution multiscale ResNet
作者简介 李轩(1967-),男,吉林东丰人,副教授,博士,主要研究方向:信号处理与检测技术、图像处理,E-mail:1041291632@qq.com。
  • 相关文献

参考文献2

二级参考文献67

  • 1Marr D.Vision:A Computational Investigation Into the Human Representation and Processing of Visual Information.Cambridge:The MIT Press,2010.
  • 2LeCun Y,Bottou L,Bengio Y,Haffner P.Gradient-based learning applied to document recognition.Proceedings of the IEEE,1998,86(11):2278-2324.
  • 3Ferrari V,Jurie F,Schmid C.From images to shape models for object detection.International Journal of Computer Vision,2009,87(3):284-303.
  • 4Latecki L J,Lakamper R,Eckhardt U.Shape descriptors for non rigid shapes with a single closed contour//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Hilton Head,USA,2000,1:424-429.
  • 5Krizhevsky A.Learning Multiple Layers of Features from Tiny Images[M.S.dissertation].University of Toronto,2009.
  • 6Torralba A,Fergus R,Freeman W T.80 million tiny images:A large dataset for non-parametric object and scene recognition.IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(11):1958-1970.
  • 7Li FebFei,Fergus R,Perona P.Learning generative visual models from few training examples:An incremental Bayesian approach tested on 101 object categories//Proceedings of the Computer Vision and Pattern Recognition (CVPR),Workshop on Generative-Model Based Vision.Washington,USA,2004:178.
  • 8Griffin G,Holub A D,Perona P.The Caltech 256.Caltech Technical Report CNS-TR-2007-001.
  • 9Lazebnik S,Schmid C,Ponce J.Beyond bags of features:Spatial pyramid matching for recognizing natural scene categories//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).New York,USA,2006:2169-2178.
  • 10Li Fei-Fei,Perona P.A Bayesian hierarchical model for learning natural scene categories//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Washington,USA,2005:524-531.

共引文献206

同被引文献10

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部