期刊文献+

基于SIFT/ORB几何约束的红外与可见光图像特征点匹配 被引量:20

Feature Point Matching Between Infrared Image and Visible Light Image Based on SIFT and ORB Operators
在线阅读 下载PDF
导出
摘要 红外图像与可见光图像记录着地物的不同属性信息,两者融合能够优势互补,弥补单一数据源信息的不足。然而由于两者成像原理不同,热红外传感器与可见光传感器对同一场景获取的图像灰度差异较大,二者图像误匹配多,融合难度大。本文在分析红外与可见光图像共有特征的基础上,提出了一种基于SIFT与ORB特征检测的匹配方法,利用SIFT算子与ORB算子同时进行特征点检测,先基于RANSAC对SIFT匹配得到的同名点进行筛选,同时结合最近邻比次近邻算法获取ORB匹配点,再利用SIFT匹配点对ORB匹配点进行距离和角度的几何约束进一步剔除误匹配,最终得到特征点分布均匀、可靠度更高的匹配结果,解决因灰度差异较大产生的匹配效果不佳的问题。利用4组红外与可见光图像进行实验,结果表明,本文算法特征点正确匹配数量相较于SIFT分别提高了约3.7倍、3.2倍、3.6倍、3倍,大幅地提高了红外与可见光图像的匹配数量,为两者间的匹配提供了一种有效的方法。 Infrared images and visible light images record different aspects of the nature of a ground object,such that the fusion of two such images of the same object can compensate for a lack of information from a single data source.However,due to the distinct imaging principles involved,the difference between the same-scene images produced by a gray image sensor and a visible light sensor is large,resulting in mismatched images that are difficult to fuse.In this paper,a matching method based on the analysis of the common features of infrared and visible light images using SIFT and ORB feature detection is proposed.The SIFT operator and the ORB operator are used to simultaneously perform feature point detection.First,the same name is obtained,using RANSAC,for SIFT matching.The points are filtered,and the nearest neighbor neighboring nearest neighbor algorithm is used to obtain the ORB matching points.Then the SIFT matching points are used to geometrically constrain the distance and angle of the ORB matching points to further reduce the mismatch.Ultimately,the feature points are evenly distributed and the reliability is higher,solving the poor-matching-effect problem.The performance of the proposed method was compared with that of SIFT using four sets of infrared and visible images,with the proposed method achieving a number of correct matching feature points approximately 3.7 times,3.2 times,3.6 times,and 3 times higher than those achieved with SIFT.This significant performance improvement indicates the effectiveness of the proposed method.
作者 奚绍礼 李巍 谢俊峰 莫凡 XI Shaoli;LI Wei;XIE Junfeng;MO Fan(School of Civil Engineering,Liaoning University of Science and Technology,Anshan 114000,China;Land Satellite Remote Sensing Application Center,Beijing 100048,China)
出处 《红外技术》 CSCD 北大核心 2020年第2期168-175,共8页 Infrared Technology
基金 “十三五”民用航天技术预先研究项目(D040106) 国家自然科学基金(41571440,41771360)
关键词 特征点匹配 SIFT ORB 红外图像 可见光图像 feature point matching SIFT ORB infrared image visible image
作者简介 奚绍礼(1993-),男,硕士研究生,主要研究方向为红外遥感与可见光遥感复合测绘。;通信作者:李巍(1965-),男,辽宁科技大学土木工程学院教授,研究方向包括变形监测、精密工程测量和数字测量技术等。E-mail:ln_as_lw@163.com。
  • 相关文献

参考文献7

二级参考文献66

  • 1倪国强,刘琼.多源图像配准技术分析与展望[J].光电工程,2004,31(9):1-6. 被引量:83
  • 2左峥嵘,杨卫东,张天序.基于空间关系约束的雷达景象匹配算法研究[J].华中科技大学学报(自然科学版),2004,32(8):76-78. 被引量:8
  • 3李晓明,郑链,胡占义.基于SIFT特征的遥感影像自动配准[J].遥感学报,2006,10(6):885-892. 被引量:155
  • 4高峰,文贡坚,吕金建.基于干线对的红外与可见光最优图像配准算法[J].计算机学报,2007,30(6):1014-1021. 被引量:26
  • 5LI Tie-jun,CHEN Zhe, WANG Ren-xiang.Fuzzy feature matching between infrared image and optical image[C]//Proceedings of SPIE, Semiconductor optoelectronic device manufacturing and applications,2001,4602: 250-265.
  • 6HUANG Xi-shan, CHEN Zhe.A wavelet-based multisensor image registration algorithm [J].IEEE Trans,ICSP'02 Proceedings, 2002,1: 773-776.
  • 7LI Hui,MANJUNATH B S, MITRA S K.A contour-based approach to multisensor image registration[J].IEEE Trails Image Processing, 1995,4( 3 ): 320 -334.
  • 8INGLADA J,ADRAGNA F. Automatic multi-sensor image registration by edge matching using genetic algorithms [C]// IEEE Trans International Geoscience and Remote Sensing Symposium, IGARSS, 2001, 5: 2313-2315.
  • 9CANNY J.A computational approach to edge detection [C]// IEEE Trans Pattern Analysis and Machine Intelligence, 1986,8(6):679-698.
  • 10BELONGIE S,MALIK J,PUZICHA J.Shape matching and object recognition using shape contexts [J].IEEE Trans. Pattern Analysis and Machine Intelligence,2002, 8(6): 509-522.

共引文献67

同被引文献226

引证文献20

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部