摘要
在2019年11月10—12日于成都召开的“2019科学计量与科技评价天府国际论坛”上,由章成志等人发起的第二届“全文本文献计量分析”学术沙龙,吸引了百余位专家学者的参与和交流,给参会者留下了深刻的印象。本文通过对沙龙嘉宾的发言和讨论内容进行梳理与总结,将沙龙的主要内容归纳为基于引用行为的学术评价体系、全文本的实体抽取、学术文本关键词自动抽取、新兴研究话题和新兴技术预测、以及全文本数据开放、构建与应用等五个主题,以期揭示国内外全文本文献计量分析在理论与技术方面的最新进展以及发展趋势。
The 2019 Tianfu International Forum of Scientometrics and Evaluation was held in Chengdu on November 10-12,as an important part of the forum,the second"Full-text Bibliometric Analysis"academic salon initiated by Zhang Chengzhi and others has attracted and impressed more than 100 experts and participants.This paper summarized the speeches and discussion of the salon and devided the contents into five themes in order to reveal the latest developments and trends in the theory and technology of full-text bibliometrics analysis at home and abroad.Themes of the salon include academic evaluation system based on citation behavior,entity extraction of full-text,automatic extraction of academic text keywords,emerging research topics and technology predictions,and the access,construction and application of the full-text data.
作者
章成志(报告)
胡志刚(报告)
徐硕(报告)
汪雪锋(报告)
师庆辉(报告)
王巍(报告)
钱佳佳(综述整理)
罗卓然(综述整理)
Zhang Chengzhi;Hu Zhigang;Xu Shuo;Wang Xuefeng;Shi Qinghui;Wang Wei;Qian Jiajia;Luo Zhuoran(School of Economics&Management,Nanjing University of Science&Technology,Nanjing 210094;Institute of Science of Science and Science&Technology Management,Dalian University of Technology Dalian 116024;College of Economics and Management,Beijing University of Technology,Beijing 100124;School of Management and Economics,Beijing Institute of Technology,Beijing 100081;Tongfang Knowledge Network Technology Co.,Ltd.,Beijing 100084;Reed Elsevier Information Technology(Beijing)Co.,Ltd.,Beijing 100738;School of Information Management,Wuhan University,Wuhan 430072;Information Retrieval and Knowledge Mining Laboratory,Wuhan University,Wuhan 430072)
出处
《信息资源管理学报》
CSSCI
2020年第1期111-117,共7页
Journal of Information Resources Management
关键词
抽取
实体抽取
新兴话题预测数据开放
Full-text
Bibliometrics
Citation behavior
Sentiment analysis
Keyword extraction
Entity extraction
Prediction of emerging research topics
Data open