期刊文献+

基于变分贝叶斯多图像超分辨的平面复眼空间分辨率增强

Spatial resolution enhancement of planar compound eye based on variational Bayesian multi-image super-resolution
在线阅读 下载PDF
导出
摘要 平面复眼成像系统利用多个子孔径对场景进行成像,由于子孔径大小和图像传感器空间采样率的限制,各子孔径图像质量较差。如何融合多个子孔径图像来获得高分辨率图像是亟需解决的问题。多图像超分辨理论利用多幅具有互补信息的图像来重构高空间分辨率图像,然而现有理论通常采用过于简化的运动模型,这种简化的运动模型对平面复眼成像并不完全适用。若直接把现有多图像超分辨理论用于平面复眼分辨率增强,不准确的相对运动估计将降低图像分辨率增强性能。针对这些问题,本文在变分贝叶斯框架下改进了现有多图像超分辨理论中的运动模型,并把导出的联合估计算法用于平面复眼分辨率增强。仿真数据实验和真实复眼数据实验验证了推荐方法的正确性和有效性。 The planar compound eye imaging system uses multiple sub-apertures to image the scene. Due to the constraint of the imaging sub-aperture size and spatial sampling rate of the image sensor, the image quality of each sub-aperture is low. How to fuse multiple sub-aperture images for a high-resolution image is an urgent problem. Multi-image super-resolution theory uses multiple images with complementary information to reconstruct high spatial resolution image. However, existing theories usually adopt the oversimplified motion model which is not suitable for planar compound eye imaging. If the existing multi-image super-resolution theory is directly applied to the resolution enhancement of the planar compound eye, the inaccurate motion estimation will reduce the performance of image resolution enhancement. In order to solve these problems, the motion model of the multi-image super-resolution is improved in the variational Bayesian framework, and the derived joint estimation algorithm is used to enhance the resolution of the planar compound eye. The correctness and effectiveness of the proposed method is verified by the simulation data experiments and the real compound eye data experiments.
作者 闵雷 杨平 许冰 刘永 Min Lei;Yang Ping;Xu Bing;Liu Yong(Key Laboratory of Adaptive Optics,Chinese Academy of Sciences,Chengdu,Sichuan 610209,China;School of Optoelectronic Science and Engineering,University of Electronic Science and Technology of China,Chengdu,Sichuan 610054,China;Institute of Optics and Electronics,Chinese Academy of Sciences,Chengdu,Sichuan 610209,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《光电工程》 CAS CSCD 北大核心 2020年第2期9-18,共10页 Opto-Electronic Engineering
基金 中国科学院创新基金项目(CXJJ-16M208) 四川省杰出青年基金项目(2012JQ0012) 中国科学院卓越科学家项目~~
关键词 平面复眼 分辨率增强 运动模型 变分贝叶斯 多图像超分辨 planar compound eye resolution enhancement motion model variational Bayesian multi-image super-resolution
作者简介 闵雷(1986-),男,博士研究生,主要从事光电图像分辨率增强、图像超分辨的研究。E-mail:minlei1986@163.com;通信作者:杨平(1980-),男,博士,研究员,主要从事自适应光学、光场信号获取与处理、激光光束净化等研究。E-mail:pingyang2516@163.com。
  • 相关文献

参考文献3

二级参考文献27

  • 1Freeman T, Jones T R, Pasztor E C. Example based superresolution [J]. IEEE Computer Graphics and Applications (S0272-1716), 2002, 22(2): 56-65.
  • 2YANG Chih-Yuan, LIU Sifei, YANG Ming-Hsuan. Structured Face Hallucination [C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, Oregon, USA, June 25-27, 2013: 1099-1106.
  • 3Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries [J]. IEEE Transactions on Image Processing(S1063-6919), 2006, 15(12): 3736-3745.
  • 4YANG Jianchao, Wright J, Thomas H, et al. Image super-resolution via sparse representation [J]. IEEE Transactions on Image Processing(S1057-7149), 2010, 19(11): 2861-2873.
  • 5Zeyde R, Elad M, Protter M. On Single Image Scale-up using Sparse Representations [C]// Proceedings of the 7th International Conference on Curves and Surfaces, Avignon, France, June 24-30, 2012, 6920: 711-730.
  • 6WANG Shenlong, ZHANG Lei, LIANG Yan, et al. Semi-coupled dictionary learning with applications to image super-resolution and photo-sketch synthesis [C]//IEEE Conference on Computer Vision and Pattern Reeognition(CVPR), Providence, RI, USA, June 16-21, 2012: 2216-2223.
  • 7HE Li, QI Hairong, Zaretzki R. Beta Process Joint Dictionary Learning for Coupled Feature Spaces with Application to Single Image Super-Resolution [C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Portland, Oregon, USA, June25-27, 2013: 345-352.
  • 8Peleg T, Elad M. A statistical prediction model based on sparse representations for single image super-resolution [J]. IEEE Transactions on Image Processing(S1057-7149), 2014, 23(6): 2569-2582.
  • 9PatiY C, Rezaiifar R, Krishnaprasad P S. Orthogonal matching pursuit: recursive fi.mction approximation with applications to wavelet decomposition [C]// Proceedings of the 27th Asilomar Conference on Signals, Systems and Computers. Pacific Grove, USA: Institute of Electrical and Electronics Engineers, 1993: 40-44.
  • 10CHEN Shaobing, Donoho D, Saunders M. Atomic decomposition by basis pursuit [J]. SlAM Review(S0036-1445), 2001, 43(1): 129-159.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部