期刊文献+

基于经验模态分解和ARMA模型的国际航空油价实证分析——以港湾石油航空燃油价格数据为例

The Empirical Analysis of International Aviation Oil Price Based on Empirical Mode Decomposition and ARMA Model: Taking the Aviation Oil Price Data of Harbor Oil as an Example
在线阅读 下载PDF
导出
摘要 价格数据数值与趋势的准确预测一直是金融风险量化控制的一大难题。在国际油价受外部因素影响剧烈波动的背景下,针对航空燃油价格预测问题,提出一种基于经验模态分解(EMD)和自回归滑动平均模型(ARMA)的非线性混合预测方法。研究结果表明,EMD-ARMA组合模型对非平稳时间序列信号的预测有效,精度相比较单一的ARMA模型有显著提高。 The accurate prediction of price data values and trends has always been a major problem in the quantitative control of financial risks.In the context of the international oil price being fluctuated by external influences in recent years, a nonlinear hybrid prediction method based on empirical mode decomposition(EMD) and autoregressive moving average model(ARMA) is proposed for the prediction of aviation kerosene price. The experimental results of the paper show that the EMD-ARMA combined model is effective for predicting non-stationary time series signals, and the accuracy is significantly improved compared with the single ARMA model.
作者 高伦 张心成 GAO Lun;ZHANG Xin-cheng(VSB-Technical University of Ostrava,Ostrava 70200,Czech Republic;Zhongnan University of Economics and Law,Wuhan 430073,China)
出处 《金陵科技学院学报(社会科学版)》 2019年第4期15-20,共6页 Journal of Jinling Institute of Technology(Social Sciences Edition)
基金 江苏省望云智库省级项目“关于国际贸易战略研究”(2019SHJ86)
关键词 组合预测 经验模态分解 ARMA 聚类 过度分解 combined forecasting empirical mode decomposition(EMD) ARMA clustering excessive decomposition
作者简介 高伦(1995-),男,江苏淮安人,博士研究生,主要从事公司风险量化、期权定价、数量经济研究。
  • 相关文献

参考文献5

二级参考文献52

  • 1王伦文.聚类的粒度分析[J].计算机工程与应用,2006,42(5):29-31. 被引量:19
  • 2KAUFMAN L, ROUSSEEUW P J. Finding groups in data: an introduc- tion to duster analysis [ M]. New York: Wiley, 1990:126 - 163.
  • 3PARK H S, JUN C H. A simple and fast algorithm for K-medoids clustering [ J]. Expert Systems with Applications, 2009, 36(2) :3336 -3341.
  • 4ZADEH L A. Fuzzy sets and information granularity [ M]// Fuzzy Sets, Fuzzy Logic and Fuzzy Systems. River Edge, NJ: Word Sei- entitle, 1996:433-448.
  • 5DINGS F, XU L, ZHU H, et al. Research and progress of cluster algorithms based on granular computing [J]. International Journal of Digital Content Technology and its Applications, 2010, 4(5): 96 - 104.
  • 6XIE X L, BENI G. A validity measure for fuzzy clustering [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(8): 841-847.
  • 7FRANK A, ASUNCION A. UCI machine learning repository [ EB/ OL]. [ 2011 - 11 - 02]. http://archive, ics. uci. edu/ml.
  • 8王国胤,张清华,胡军.粒计算研究综述[J].智能系统学报,2007,2(6):8-26. 被引量:112
  • 9焦瑾璞.构建普惠金融体系的重要性[J].中国金融,2010(10):12-13. 被引量:214
  • 10李家垒,许化龙,何婧.光纤陀螺信号的小波包去噪及改进[J].光学学报,2010,30(8):2224-2228. 被引量:20

共引文献123

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部