摘要
研究了矩形脉冲激励下SMA振子瞬态响应的全局特性.采用多项式形式的本构方程描述SMA弹簧的恢复力,以此建立SMA振子的动力学方程;且将矩形脉冲激励的SMA振子的瞬态响应响应分为两个阶段:第一阶段是在外力恒定时的衰减振动;第二阶段是没有外力激励的衰减振动.讨论了平衡点的数目,给出了SMA振子的在不同条件下的相平面和时间历程图.最后,采用数值解验证理论分析结果的有效性.研究结果表明,对于不同强度及宽度的矩形脉冲激励,SMA振子会收敛到不同的稳定平衡点,收敛时间较短.
The global characteristics of transient response of a single-degree-of-freedom shape memory oscillator under rectangular pulse excitation were investigated.The equation of motion was established by using a polynomial constitutive model to describe the restitution force of the oscillator.Here,the response of the oscillator under rectangular pulse excitation was divided into two stages.The first stage was the attenuation vibration under an external constant force excitation,while the second stage was the attenuation vibration without any external force excitation.The number of equilibrium points was discussed,and the phase plane and time history of the shape memory oscillator on different conditions were given.Finally,numerical solutions were presented to validate the theoretical results.
作者
刘延彬
Liu Yanbin(School of Mechanics and Optoelectronic Physics,Anhui University of Science and Technology,Huainan 232001,China)
出处
《动力学与控制学报》
2019年第6期520-527,共8页
Journal of Dynamics and Control
基金
国家自然科学基金(51604011)
2017年度安徽省自然科学基金(1708085QF135)~~
关键词
SMA振子
矩形脉冲
全局特性
瞬态响应
衰减振动
SMA oscillator
rectangular pulse excitations
global characteristics
transient response
attenuated vibration
作者简介
通讯作者:刘延彬,E-mail:d_lyb@126.com。