期刊文献+

定态薛定谔算子组的Dirichlet谱估计 被引量:1

Dirichlet Spectrum Estimate for System of Stationary State Schr?dinger Operator
在线阅读 下载PDF
导出
摘要 对定态薛定谔算子组的离散谱进行定量分析,利用算子谱的定性理论、分部积分和Young不等式等主要方法,获得了在Dirichlet边界条件下用前n个离散谱的线性组合来估计第n+1个谱上界的一个解析不等式,其界与权函数、空间维数有关,而与所论区域的几何度量、算子组中方程的个数无关,其结果是参考文献结论的进一步拓展,在量子力学中有着潜在的应用价值。 Quantitative analysis of discrete spectrum for system of stationary state Schr dinger operator is considered.Under Dirichlet boundary condition,an analytic inequality estimating the upper bound of the(n+1)th spectrum by a linear combination of the former n spectra is obtained using spectrum qualitative theory of operators,integration by parts and Young inequality etc.This bound is dependent of the weight function and space dimension,but irrelevant to the geometric measure of the domain or the equation numbers in the system.The results in the bibliography are improved and extended in this paper.The conclusion has potential application value in the theory of quantum mechanics.
作者 黄振明 HUANG Zhen-ming(Department of Mathematics and Physics,Suzhou Vocational University,Suzhou 215104 Jiangsu,China)
出处 《贵阳学院学报(自然科学版)》 2019年第4期4-6,11,共4页 Journal of Guiyang University:Natural Sciences
关键词 薛定谔算子组 离散谱 Rayleigh-Ritz原理 特征函数组 解析不等式 system of Schr dinger operator discrete spectrum Rayleigh-Ritz principle eigenfunction system analytic inequality
作者简介 黄振明(1962-),男,江苏苏州人,副教授。主要研究方向为:微分算子的谱理论。
  • 相关文献

参考文献5

二级参考文献23

  • 1Gel'fand I M, Levitan B M. On the determination of a differential equation from its special function[J]. Izv. Akad. Nauk SSR. Ser. Mat., 1951,15:309-360.
  • 2Krein M G. Solution of the inverse Sturm-Liouville problem[J]. Dokl. Akad. Nauk SSSR, 1951,76:21-24.
  • 3Borg G. Uniqueness theorems in the spectral theory of y" + (λ- q(x))y = 0[C]. Oslo: Johan Grundt Tanums Forlag, 1952.
  • 4Marchenko V A. Some questions in the theory of one-dimensional linear differential operators of the second order[J]. Trudy Moskov. Math. Obsc, 1952,1:327-420.
  • 5Simon B. A new approach to inverse spectral theory, I . Fundamental formalism[J]. Annals of Mathematics, 1999,150:1029-1057.
  • 6Gesztesy F, Simon B. A new approach to inverse spectral theory, II. General real potentials and the connection to the spectral measure[J]. Annals of Mathematics, 2000,152:593-643.
  • 7Liu X S, Liu X Y, Zhou Z Y, Ding P Z, Pan S F. Numerical Solution of one-Dimensional Time-Independent Schrtidinger E- quation by Using Symplectic Schenes [ J ]. Int. J. Quantum Chem, 2000,79 (6) :343 - 349.
  • 8Liu X S, Chi Y H, Ding P Z. Symplectic Schemes and the Shooting Method for Eigenvalues of the Schr-dinger equation[ J]. Chin. Phys. Lett. , 2004,21(9) :1681 - 1684.
  • 9Anastassi Z A, Eimos T. Trigonometrically fitted fifth-order runge-kutta methods for the numerical solution of the schrodinger equation[ J ]. Mathematical and Computer Modelling, 2005, 42 (7) :877 - 886.
  • 10Simos T E. Exponentially-fitted Runge-Kutta-Nystrom method for the numerical solution of initial-value problems with oscillating solutions [ J ]. Appl. Math. Lett. ,2002 , 15 ( 2 ) :217 - 225.

共引文献3

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部