期刊文献+

选票版面结构识别相关技术

Relevant technology of ballot structure identification
在线阅读 下载PDF
导出
摘要 针对目前选票处理过程选票物理结构识别和逻辑结构识别存在的问题。提出一种在改进的游程线框检测基础上进行逻辑符号识别的方法。首先对扫描图像进行二值化、倾斜矫正等预处理,接着利用同线游程遍历线框,再通过设定的线段重合度阈值合并相关度高的线段,最后根据定义的垂直连接线判定式找到对应线框。在此之后对线框内字符逻辑结构进行识别,利用双向游程原理设定符号游程,并对符号区域特征优化后,结合游程坐标约束集判定符号所属类别。通过实验对比标记块算法,在保证时间效率的同时,改进算法对符号的处理准确度达到99%,能满足实际选举需求。 For current ballot processing process,there are problems in the physical structure identification and logical structure identification of the ballot.A method for logical symbol recognition based on improved run-line frame detection was proposed.Firstly,a scanned image was preprocessed by binarization,tilt correction,etc.,and then the line frames were traversed by the same line run,and then the line segments with high correlation were merged by the set line segment coincidence threshold.Finally,the corresponding wireframes were found according to the defined vertical connection line judgment formula.After that,the logical structure of the characters in the wireframe were identified.The symbol runs were set by using the two-way run principle,and then the symbol region features were optimized and combined with the run coordinate constraint set to determine the category to which the symbol belongs.By comparing the marker block algorithm with experiments,while improving the time efficiency,the improved algorithm can process the symbols with an accuracy of 99%,which can meet the actual election requirements.
作者 代威 官磊 韩啸 DAI Wei;GUAN Lei;HAN Xiao(Chengdu Institute of Computer Application,Chinese Academy of Sciences,Chengdu Sichuan 610041,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《计算机应用》 CSCD 北大核心 2019年第S02期242-246,共5页 journal of Computer Applications
关键词 电子选举 选票 符号识别 版面理解 表格游程 electronic election ballot symbol recognition layout understanding table run
作者简介 通信作者:代威(1993—),男,湖北洪湖人,硕士研究生,主要研究方向:图像处理,电子邮箱davied08@163.com;官磊(1980—),男,四川成都人,高级工程师,硕士,主要研究方向:软件工程、嵌入式系统、数据库系统;韩啸(1992—),男,吉林延边人,博士研究生,主要研究方向:计算机视觉。
  • 相关文献

参考文献5

二级参考文献38

  • 1谢顺平,都金康,王结臣.实现栅格图形和图像数据矢量化提取的游程轮廓追踪法[J].遥感学报,2004,8(5):465-470. 被引量:16
  • 2李政,杨扬,颉斌,王宏.一种基于Hough变换的文档图像倾斜纠正方法[J].计算机应用,2005,25(3):583-585. 被引量:21
  • 3管继斌,明德烈.基于游程的倾斜表格图像的快速检测和校正[J].华中科技大学学报(自然科学版),2005,33(8):69-71. 被引量:7
  • 4王思佳,韩玮,陈克非.电子选举研究的挑战和进展[J].计算机工程,2006,32(15):7-9. 被引量:15
  • 5KOHNO T, STUBBLEFIELD A, RUBIN A D, et al. Analysis of an electronic voting system [ C]// Proceedings of the 2004 IEEE Sym- posium on Security and Privacy. Washington, DC: IEEE Computer Society, 2004:27-40.
  • 6RAMEL J Y, VINCENT N, EMPTOZ H. A structural representation for understanding line-drawing images [ J]. International Journal on Document Analysis and Recognition, 2000, 3(2): 58 -66.
  • 7QURESHI R J, RAMEL J Y, CARDOT H, et al. Combination of symbolic and statistical features for symbols recognition [ C]//Pro- ceedings of the 2007 IEEE International Conference on Signal Pro- cessing, Communications and Networking. Piscataway: IEEE, 2007:477-482.
  • 8LUQMAN M M, BROUARD T, RAMEL J Y. Graphic symbol recogni- tion using graph based signature and Bayesian network classifier [ C]// Proceedings of the 2009 10th International Conference on Document A- nalysis and Recognition. Piscataway: IEEE, 20139: 1325-1329.
  • 9BURGES C J C. A tutorial on support vector machines for pattern recognition [ J]. Data Mining and Knowledge Discovery, 1998, 2 (2): 121-1667.
  • 10CAO ZHIGUO, XIAO YANG, ZOU LAMEI. The application of run-length features in remote sensing classification combined with neural network and rough set [ C]//Proceedings of the 2007 IEEE International Conference on Granular Computing. Piscataway: IEEE, 2007:552-557.

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部