摘要
综合考虑磨损故障和裂纹故障等因素,建立含故障的两端刚性支撑的呼吸式裂纹转子模型,并运用四阶变步长Runge-Kutta法对含碰摩的呼吸式裂纹转子模型的动力学方程进行数值求解.得到了呼吸式裂纹转子系统在碰磨故障存在的情况下,不同裂纹角对应的分岔图,相图,Poincaré截面投影图,直观显示呼吸式裂纹转子系统的动力学行为.研究结果表明,随着无量纲频率的减小,系统通常经周期倍化分岔序列进入混沌,并且呼吸式裂纹的裂纹角越大,系统碰摩越严重.
Considering the factors of wear fault and crack failure,the model of the breathing-type cracked rotor with rigid support at both ends is established,and the dynamic equation of the rotor model with the frictional crack is simulated by the fourth-order variable-step Runge-Kutta method while the numerical solution is carried out.The bifurcation diagram,phase diagram and Poincaré section projection of the different crack angles in the case of the friction crack rotor system are obtained in the presence of the rubbing fault.The dynamic behavior of the respiratory cracked rotor system is visually displayed.The results show that with the decrease of the rotational speed ratio,the system usually enters chaos through the periodic multiplication bifurcation sequence,and the larger the crack angle of the respiratory crack,the more serious the system rubs.
作者
曹锐锐
石慧荣
杨艳
CAO Rui-rui;SHI Hui-rong;YANG Yan(School of Mechatronic Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China;Key Laboratory of System Dynamics and Reliability of Rail Transport Equipment of Gansu Province,Lanzhou 730070,China)
出处
《兰州交通大学学报》
CAS
2019年第6期62-67,共6页
Journal of Lanzhou Jiaotong University
关键词
裂纹转子
龙格库塔法
周期运动
分岔
混沌
crack rotor
Runge-Kutta method
periodic motion
bifurcation
chaos
作者简介
曹锐锐(1994-),男,甘肃陇南人,硕士研究生,主要研究方向为车辆系统动力学.