期刊文献+

智能放疗云平台自动勾画食管癌患者心脏结构的应用 被引量:9

Application of RAIC.OIS in automatic segmentation of the heart in patients with esophageal cancer
在线阅读 下载PDF
导出
摘要 目的:测试和评估智能放疗云平台(RAIC.OIS)在食管癌患者心脏结构自动勾画中的应用。方法:选取2018年2月~11月收治的20例食管癌患者进行研究。首先,将20例患者的放疗定位CT图像从Eclipse治疗计划系统传输至连心医疗的智能放疗云平台(RAIC.OIS);然后,使用RAIC.OIS的自动勾画工具,对CT图像中的心脏结构进行自动勾画;最后,将勾画好的结构文件传输并导入Eclipse。通过比较自动勾画和手工勾画的体积差异、位置差异、形状一致性和勾画时间,评估该软件的自动勾画工具应用于心脏结构自动勾画的可行性。结果:根据测量的数据结果,发现有1例患者的心脏形状和位置比较特殊,排除该患者的数据,对余下19例患者的数据进行统计分析。自动和手工两种方式勾画食管癌患者心脏结构的体积差异为(-17.08±8.66)%,相似性指数值为0.87±0.05。x、y和z这3个方向的位置差异分别为(0.12±0.09)、(0.11±0.08)和(0.22±0.16)cm,总位置差异为(0.31±0.14)cm。19例患者的自动勾画时间为(83±12)s,手工勾画时间为(284±58)s。结论:智能放疗云平台的自动勾画工具,对绝大部分食管癌患者的心脏勾画能够达到满意的结果。使用该工具可缩短心脏结构的勾画时间,提高放疗工作效率。 Objective To test and evaluate the application of intelligent radiotherapy cloud platform(RAIC.OIS)for automatically segmenting the heart in patients with esophageal cancer.Methods Twenty patients with esophageal cancer admitted to hospital from February to November 2018 were enrolled in the study.The planning CT images of 20 patients were firstly transferred from Eclipse treatment planning system to RAIC.OIS of LINKING MED.Then the heart in CT images was automatically segmented by RAIC.OIS.Finally,the structure files of the heart were transferred to Eclipse after automatic segmentation.The feasibility of using the proposed software for automatic segmentation of the heart was evaluated by comparing the differences in volume,position,Dice similarity coefficient and segmentation time between automatic segmentation and manual segmentation.Results The measurement results showed that the shape and position of the heart in a certain patient were special.After eliminating the data of the patient,statistical analysis was conducted on the data of the other 19 patients.The differences in volume between automatic segmentation and manual segmentation were(-17.08±8.66)%,and Dice similarity coefficient value was 0.87±0.05.The position differences of x,y and z directions were(0.12±0.09),(0.11±0.08)and(0.22±0.16)cm,respectively,and the total position difference was(0.31±0.14)cm.The time for automatic segmentation and manual segmentation for the 19 patients were(83±12)and(284±58)s,respectively.Conclusion The proposed intelligent radiotherapy cloud platform can be used to obtain satisfactory automatic segmentation of the heart in most patients with esophageal cancer.The use of proposed automatic segmentation software can shorten the time for the heart segmentation and improve working efficiency.
作者 时飞跃 王敏 秦伟 金洵 赵环宇 SHI Feiyue;WANG Min;QIN Wei;JIN Xun;ZHAO Huanyu(Radiation Therapy Center,Nanjing First Hospital,Nanjing Medical University,Nanjing 210006,China;Center of Medical Physics,Nanjing Medical University,Nanjing 210029,China;Second Clinical Medical College,Nanjing University of Chinese Medicine,Nanjing 210023,China)
出处 《中国医学物理学杂志》 CSCD 2019年第12期1377-1382,共6页 Chinese Journal of Medical Physics
基金 国家自然科学基金青年科学基金(81603674) 江苏省自然科学基金青年基金(BK20161049)
关键词 食管癌 自动勾画 心脏 放射治疗 云平台 esophageal cancer automatic segmentation heart radiotherapy cloud platform
作者简介 时飞跃,博士,助理研究员,研究方向:肿瘤放射物理,E-mail:shifeiyue2013@126.com;通信作者:赵环宇,副主任医师,研究方向:肿瘤放射治疗,E-mail:oncodoc@sina.com。
  • 相关文献

参考文献19

二级参考文献135

  • 1Chuang-Zhen Chen,Jian-Zhou Chen,De-Rui Li,Zhi-Xiong Lin,Ming-Zhen Zhou,Dong-Sheng Li,Zhi-Jian Chen.Long-term outcomes and prognostic factors for patients with esophageal cancer following radiotherapy[J].World Journal of Gastroenterology,2013,19(10):1639-1644. 被引量:22
  • 2王雪华,秦海涛,刘树民.中医药对恶性肿瘤放疗减毒增敏作用的研究[J].中医药信息,1993,10(4):33-35. 被引量:3
  • 3祝淑钗,李任,王玉祥,李娟,邱嵘.500例中晚期食管癌单纯放疗的多因素分析[J].中华放射肿瘤学杂志,2005,14(4):253-258. 被引量:68
  • 4王军,张辛,薛同国,祝淑钗,韩春.食管癌三维立体适形放疗和束流调强放射治疗现状[J].肿瘤防治研究,2006,33(12):913-916. 被引量:7
  • 5全国肿瘤登记中心.中国肿瘤登记工作指导手册[M].北京:中国协和医科大学出版社,2004.48-50.
  • 6赫捷,赵平,陈万青.2012年中国肿瘤登记年报[M].北京:军事医学科学出版社,2012.56-59.
  • 7Teguh DN,Levendag PC,Voet PW. Clinical validation of atlas-based auto-segmentation of multiple target volumes and normal tissue(swallowing/mastication) structures in the head and neck[J].{H}International Journal of Radiation Oncology Biology Physics,2011.950-957.
  • 8Tsuji SY,Hwang A,Weinberg V. Dosimetric evaluation of automatic segmentation for adaptive IMRT for head-and-neck cancer[J].{H}International Journal of Radiation Oncology Biology Physics,2010.707-714.
  • 9Zijdenbos AP,Dawant BM,Margolin RA. Morphometric analysis of white matter lesions in MR images:method and validation[J].{H}IEEE Transactions on Medical Imaging,1994.716-724.
  • 10Zhang T,Chi Y,Meldolesi E. Automatic delineation of online head-and-neck computed tomography images:toward on-line adaptive radiotherapy[J].{H}International Journal of Radiation Oncology Biology Physics,2007.522-530.

共引文献1057

同被引文献59

引证文献9

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部