期刊文献+

BSO算法在移动机器人三维路径规划中的应用 被引量:7

Three dimensional path planning of mobile robot based on BSO algorithm
在线阅读 下载PDF
导出
摘要 为准确获得全局静态环境位置移动机器人的三维路径规划,提出了将二维栅格法建模拓扑到三维的建模方法和BSO算法的移动机器人路径规划算法。结合天牛觅食和鸟群觅食的行为特征,将粒子群算法中的粒子用天牛来代替,通过天牛对气味浓度的判断更新天牛的位置,实现天牛个体代替粒子群算法的粒子寻优。结果表明:BSO算法在三维路径规划中的路径长度、耗时仅为蚁群算法的89.59%和40.60%,具有良好的搜索能力。该算法为移动机器人在三维环境下规划路径提供一种有效的选择。 This paper proposes a method of modeling topology from 2D grid method to 3D and a BSO algorithm for path planning of mobile robot in order to accurately obtain the 3D path planning of mobile robot in the global static environment.The algorithm works by combining the behavior characteristics of beetle’s foraging and bird swarm’s foraging;replacing the particles in particle swarm optimization with beetles;updating the position of beetle by the judgment of odor concentration and thereby achieving the optimization of individual beetle instead of individual particle swarm.Simulations show that the path length and time consumption of BSO algorithm in three-dimensional path planning are only 89.59%and 40.60%of ACO,and this gives the algorithm a better search performance,hence an effective choice for mobile robot to plan the path in a specific environment.
作者 沈显庆 孙启智 Shen Xianqing;Sun Qizhi(School of Electrical&Control Engineering,Heilongjiang University of Science&Technology,Harbin 150022,China)
出处 《黑龙江科技大学学报》 CAS 2019年第6期747-751,共5页 Journal of Heilongjiang University of Science And Technology
关键词 移动机器人 路径规划 蚁群算法 BSO算法 mobile robot path planning ACO algorithm BSO algorithm
作者简介 第一作者简介:沈显庆(1969-),男,吉林省通化人,教授,博士,研究方向:先进伺服系统与智能控制,E-mail:shenxianqing20012@163.com。
  • 相关文献

参考文献5

二级参考文献53

  • 1Deng G F, Lin W T, Lo C C. Markowitz-Based Portfolio Selection with Cardinality Constraints Using Improved Particle Swarm Optimiza- tion[J]. Expert Systems with Applications, 2012,(39).
  • 2Corazza M, Fasano G, Gusso R. Particle Swarm Optimization with Non-Smooth Penalty Reformulation, for a Complex Portfolio Selection Problem[J]. Applied Mathematics and Computation, 2013, (224).
  • 3He G, Huang N J. A New Particle Swarm Optimization Algorithm with an Application[J]. Applied Mathematics and Computation,2014, (232).
  • 4Zhu H H, Wang Y, Wang K H, et al. Particle Swarm Optimization (PSO) for the Constrained Portfolio Optimization Problem[J]. Expert Systems with Applications., 2011,(38).
  • 5Qin Q D, Li L, Cheng S. A Novel Hybrid Algorithm for Mean-CVaR Portfolio Selection with Real-World Constraints[G].The Fifth Interna- tional Conference on Swarm Intelligence, Part II, LNCS 8795,2014.
  • 6Golmakani H R, Fazel M. Constrained Portfolio Selection using Parti- cle Swarm Optimization[J]. Expert Systems with Applications,2011, (38).
  • 7Liagkouras K, Metaxiotis K. A New Probe Guided Mutation Operator and its Application for Solving the Cardinality Constrained Portfolio Optimization Problem[J]. Expert Systems with Applications, 2014, (41).
  • 8Shi Y, Eberhart R. A Modified Particle Swarm Optimizer[J]. Paper Presented at the Evolutionary Computation Proceedings, the 1998 IEEE International Conference on 1998. IEEE world congress on com- putational intelligence, 1998.
  • 9Chen M R, Li X, Zhang X, et al. A Novel Particle Swarm Optimizer Hybridized with Extremal Optimization[J]. Applied Soft Coputing, 2010,(10).
  • 10Juan C, Cabrera F, Coello C A C Handling Constraints in Particle Swarm Optimization using a Small Population Size Advances in Arti- ficial Intelligence[M]. Berlin Spring, 2007.

共引文献85

同被引文献69

引证文献7

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部