期刊文献+

基于混合智能的采煤机齿轮传动故障诊断方法 被引量:4

Fault Diagnosis Method for Shearer Gear Transmission Based on Hybrid Intelligence
在线阅读 下载PDF
导出
摘要 采煤机齿轮传动部分是保障其稳定运转的关键,智能诊断方法各有优缺点,综合多种智能算法的混合智能方法有效保障了预测结果的准确性。研究了故障诊断的基本流程,采用多种特征提取方法建立采煤机齿轮传动的混合智能诊断模型,介绍了混合智能诊断模型中ANFIS分类器的基本结构以及各层之间的传递函数,确定了ANFIS的样本训练过程以及网络诊断流程。通过对比ANFIS和RBF神经网络的迭代次数证明了ANFIS的训练速度更快,对比单一ANFIS分类器和混合智能模型的分类准确率,验证了混合智能模型的预测准确率更高。 The gear transmission part of shearer is the key to ensure its stable operation. The intelligent diagnosis methods have their own advantages and disadvantages. The hybrid intelligent method combining multiple intelligent algorithms effectively guarantees the accuracy of the prediction results.The basic process of fault diagnosis was studied. The hybrid intelligent diagnosis model of shearer gear transmission was established by multiple feature extraction methods. The basic structure of ANFIS classifier and the transfer function between layers were introduced. The sample training process and network diagnostic process of ANFIS were determined. By comparing the iteration times of ANFIS and RBF neural network, it is proved that the training speed of ANFIS is faster. Compared with the classification accuracy of single ANFIS classifier and hybrid intelligent model, the prediction accuracy of hybrid intelligent model is higher.
作者 田林红 赵阳 Tian Linhong;Zhao Yang(Henan Polytechnic Institute,Nanyang 473000,China)
出处 《煤矿机械》 北大核心 2019年第11期155-158,共4页 Coal Mine Machinery
关键词 采煤机齿轮传动 故障诊断 混合智能 ANFIS 特征提取 shearer gear transmission fault diagnosis hybrid intelligence ANFIS feature extraction
作者简介 田林红(1965-),河南新野人,副教授,硕士,主要从事数控机床故障诊断研究工作,电子信箱:tianlinhong@163.com.
  • 相关文献

参考文献3

二级参考文献21

  • 1刘青志,周绍磊,沐阿华.基于ANN的组合智能故障诊断专家系统的设计[J].计算机测量与控制,2004,12(7):613-615. 被引量:9
  • 2李海港,周一恒.神经网络故障诊断专家系统的结构设计[J].煤矿机械,2005,26(1):127-128. 被引量:8
  • 3雷亚国,何正嘉,訾艳阳,胡桥.基于特征评估和神经网络的机械故障诊断模型[J].西安交通大学学报,2006,40(5):558-562. 被引量:39
  • 4胡桥,何正嘉,张周锁,訾艳阳,雷亚国.基于提升小波包变换和集成支持矢量机的早期故障智能诊断[J].机械工程学报,2006,42(8):16-22. 被引量:44
  • 5HUANG N E, SHEN Z, LONG S R, et al. The Empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J].Proceedings of the Royal Society of London, 1998, 454(1): 903-995.
  • 6YANG B S, HAN T, AN J L. ART-KOHONEN neural network for fault diagnosis of rotating machinery [J]. Mechanical Systems and Signal Processing, 2004, 18.. 645-657.
  • 7YANG B S, KIM K J. Application of Dempster-Shafer theory in fault diagnosis of induction motors using vibration and current signals [J]. Mechanical Systems and Signal Processing, 2006, 20:403-420.
  • 8KITTLER J, HATEF M, DUIN R P W, et al. On combining classifiers [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(3): 226-239.
  • 9FRED A L N, JAIN A K. Combining multiple clusterings using evidence accumulation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(6): 835-850.
  • 10NANNI L. Comparison among feature extraction methods for HIV-1 protease cleavage site prediction [J]. Pattern Recognition, 2006, 39:711-713.

共引文献111

同被引文献19

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部