摘要
随着工业的快速发展以及人口增长对能源的巨大需求,化石燃料的过度消耗导致了严重的环境污染和能源危机,威胁人类未来的生存和发展。光催化技术(Photocatalysis)利用绿色的太阳能为能源,被认为是解决环境污染和能源危机最有前景的技术之一。在太阳光的照射下,光催化剂可以吸收光能并将其转化为化学能,用于污染物处理和清洁能源生产。因此,光催化技术的开发和应用受到了世界范围内的广泛关注。光催化技术的核心是光催化材料。在过去的几十年里,随着制备技术的发展以及对光催化技术理解的加深,光催化材料已经从最初的TiO2发展到各种金属氧化物、硫化物、氮化物以及金属单质、非金属和有机光催化材料,其应用也从液相的污染物去除、水分解发展到有机合成和各种气相光催化反应,包括NO氧化、CO2还原、CH4活化等。目前大部分研究集中在如何提高光催化活性,然而,由于光催化材料主要以粉末形式存在,其具有强烈的聚集倾向,在实际的应用过程中,只有表层的光催化材料可以吸收光能以及吸附污染物,大部分的光催化材料对活性没有贡献,导致光催化效率较低。另一方面,粉末的飞散不仅造成回收操作复杂,而且易引起二次污染。近年来,整体式光催化材料(Monolithic photocatalyst)受到了极大的关注,其具有丰富的孔结构和大的比表面积,有效提高了与污染物的接触面积以及对光能的利用率。此外,整体式光催化材料优异的宏观特性使其具有极高的可操作性和简单快捷的回收能力,避免了二次污染。随着制备技术的不断发展,整体式光催化材料已经从均相的整体式气凝胶光催化材料(Aerogel photocatalyst)发展到不同组成的整体式复合型光催化材料(Hybrid photocatalyst),同时,其应用也从简单的物理吸附扩展到光化学反应,包括环境修复以及清洁能源生产。本文总结了整体式光催化材料的制备策略,特别强调了整体式气凝胶光催化材料和复合型整体式光催化材料的典型合成路线及在液相污染物的去除、气相污染物的去除、水分解和光催化CO2转换方面应用的最新研究进展。
With the rapid development of industry and the increasing energy demand caused by population growth,the extensive utilization of fossilfuels results in serious environment pollution and energy crisis,which are threatening the survival and development of human society.Photocatalysis has been considered as one of the most potential techniques to solve the environment and energy problems owing to the use of green solar energy as source. Under solar light illumination,light energy can be converted to chemical energy over photocatalyst for environmental remediation and clean energy production. Therefore,photocatalysis has attracted great attention in the world wide.The core of photocatalysis is photocatalyst. In the past decades,with the development of preparation technology and the in deep understanding of photocatalysis,the kinds of photocatalyst have been broadened from TiO2 to various kinds of metal oxide,sulfide,nitride and metallic element,nonmetal and organic photocatalyst. And its application has also spread from aqueous environmental remediation and water splitting to organic synthesis and various gas-phase reaction,including NO oxidization,CO2 reduction,CH4 activation and so on. Current reports focus on the photocatalytic activity. However,most of the reported photocatalysts are in powder form,which has strong tendency to agglomerate. In the practical application,only the surface of photocatalyst powder can adsorb pollutant and absorb light,and most photocatalyst has no contribution to photocatalysis,thus resulting in low photocatalytic activity. On the other hand,photocatalyst powder will scatter to everywhere and inevitably get lost under gas or water flow,increasing the difficulty of recovery operation and leading to serious secondary pollution.Recently,monolithic photocatalyst has attracted great attention. Monolithic photocatalysts usually possesses abundant porous structure and large surface area,which can increase the contact area of pollutant and the utilization of light energy. Moreover,their monolithic properties significantly improve the operability and simplify the recovery process. With the development of preparation technology,the types of monolithic photocatalysts have broadened from homogeneous aerogel photocatalysts to monolithic hybrid photocatalysts. Meanwhile,their application has also spread from physical adsorption to photocatalytic reaction,including environmental remediation and clean energy production.In this review,we summarize the preparation strategies and applications of monolithic photocatalysts. In particular,we highlight recent developments for the construction of aerogel photocatalyst and grafting photocatalyst to monolithic substrates,as well as update applications on the removal of aqueous pollutants,gas pollution remediation,water splitting and photocatalysis CO2 conversion.
作者
张瑞阳
李成金
张艾丽
周莹
ZHANG Ruiyang;LI Chengjin;ZHANG Aili;ZHOU Ying(State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu 610500,China;The Center of New Energy Materials and Technology,School of Materials Science and Engineering,Southwest Petroleum University,Chengdu 610500,China)
出处
《材料导报》
EI
CAS
CSCD
北大核心
2020年第3期1-16,共16页
Materials Reports
基金
四川省国际科技合作与交流研发项目(2017HH0030)
四川省青年科技创新研究团队专项计划(2016TD0011)
成都市国际合作项目(2017-GH02-00014-HZ)
四川省大学生创新创业训练计划(201810615048)~~
关键词
整体式光催化材料
光催化
环境修复
清洁能源生产
monolithic photocatalyst
photocatalysis
environmental remediation
clean energy production
作者简介
张瑞阳,2012年6月毕业于河南理工大学,获得工学学士学位;2017年6月毕业于西南石油大学,获得工学硕士学位。现为西南石油大学博士研究生,在周莹教授的指导下进行研究。目前主要研究领域为二维整体式光催化材料的制备及在环境净化和清洁能源生产中的应用;周莹,2004年在中南大学获得无机非金属材料学士学位,2007年于中国科学院上海光学精密机械研究所获得材料学硕士学位,2010年在瑞士苏黎世大学(UZH)获得材料化学博士学位。长期从事油气资源清洁利用与污染治理材料研究,受聘为日本京都大学讲座教授,入选德国洪堡学者、英国皇家化学会“Top 1%高被引中国作者”榜单、四川省“百人计划”特聘专家、四川省有突出贡献的优秀专家等,近5年主持各类科研项目15项,包括国家自然科学基金3项,在Nature Commun.,ACS Catal.等期刊发表SCI论文119篇,被SCI引用3000余次,11篇论文入选ESI高被引论文,H指数为30,担任石油和化工行业天然气开发及利用新材料重点实验室主任、国家能源新材料技术研发中心理事、四川省科技青年联合会常务理事,Chinese Chemical Letter、Recent Innovations in Chemical Engineering等期刊编委或青年编委,《催化学报》、Frontiers in Materials、Journal of Nanomaterials等期刊专刊特邀编辑等。yzhou@swpu.edu.cn。