期刊文献+

基于QAA算法的辽河口悬浮物浓度遥感反演 被引量:3

Monitoring the Suspended Sediment Concentration of Liaohe River Delta Using Tiangong-2 Image Based on Quasi-analytical Algorithm
在线阅读 下载PDF
导出
摘要 悬浮物浓度是水体最重要的参数之一.QAA(quasi-analytical algorithm)算法是基于辐射传输原理的半分析模型方法.为反演辽河口三角洲悬浮物浓度,本研究在辽河口采样,使用重量法对样品进行处理,获得104个悬浮物浓度数据,随机选取其中的部分悬浮物浓度样本,通过天宫二号宽波段成像仪数据,基于QAA算法,选取参考波长(λ0),求出水体总吸收系数[a(λ)],并建立基于QAA算法求解得到的a(λ)的悬浮物浓度反演模型,使用剩余的非建模的悬浮物浓度样本对上述QAA模型进行验证,模型R 2为0.69.结果表明,悬浮物反演模型精度较好,但仍有提升空间;使用多光谱数据替代高光谱数据进行QAA估算有着广阔的应用前景,相较于高光谱数据具有时效性与经济性的优势. Suspended sediment concentration is one of the most important parameters of water.Quasi-analytical algorithm(QAA)is a semi-analytical model method based on radiation transfer principle.In order to retrieve the suspended sediment concentration in Liaohe Estuary Delta,104 data were obtained by the gravimetric method.Some of the samples were randomly selected to generate the inversion model,and the remaining Non-modeling samples were used to verify the above model.Based on the data of Tiangong 2 Wide-wavelengths Image(MWI)and QAA algorithm,The absorption coefficient of the total of water was calculated by selecting reference wavelength,and the QAA algorithm was established.The model fitting accuracy R-square was 0.69.The results show that the accuracy of suspended sediment concentration model is good,but there is still ample for improvement.The use of multi-spectral data instead of hyperspectral data for QAA estimation has broad application prospects,and has the advantages of timeliness and economy compared with Hyperspectral data.
作者 邓智天 孙永华 邱琦 孙薇 倪萍 邢瑞 DENG Zhitian;SUN Yonghua;QIU Qi;SUN Wei;NI Ping;XING Rui(College of Resource Environment and Tourism,Capital Normal University,Beijing 100048)
出处 《首都师范大学学报(自然科学版)》 2019年第6期75-82,共8页 Journal of Capital Normal University:Natural Science Edition
基金 十三五国家重点研发计划课题-河流、河口污染的溯源与治理规划(2017YFC0406004) 十三五国家重点研发计划课题-松辽流域江河湖库水资源联合调控平台与示范(2017YFC0406006) 北京市教委科技计划(SQKM201710028013)
关键词 天宫二号 QAA 悬浮物 Tiangong-2 quasi-analytical algorithm suspended sediment concentration
作者简介 通信作者:孙永华, syhua1982@163.com。
  • 相关文献

参考文献5

二级参考文献84

共引文献311

同被引文献60

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部