期刊文献+

铁氧体湿压磁材缺陷检测方法的研究 被引量:1

Defect Detection Method for Wet-pressed Ferrite Magnets
在线阅读 下载PDF
导出
摘要 为实现自动检测铁氧体湿压磁瓦外观缺陷,设计一种基于机器视觉的铁氧体湿压磁体外观检测设备。首先介绍系统结构和电气控制部分,接着根据铁氧体湿压磁体表面裂纹噪点多特点,采用多尺度灰度变换增强特征域对比度,并采用快速离散傅里叶变换准确定位缺陷位置,最后利用硬阀值分割图像,并比较灰度形态滤波和软形态混合滤波准确度。实验表明,软形态混合滤波更适用于多纹理的氧体湿压材料缺陷识别。 A machine vision-based appearance detection system is proposed for automatically detecting the appearance defects of wet-pressed ferrite magnets.Firstly,the system structure and electrical control part are introduced.Then,according to the characteristics of crack noise on the surface of wet-pressed ferrite magnets,multi-scale gray transform is used to enhance the contrast of feature domain,and fast discrete Fourier transform is used to locate the defect accurately.Finally,the image is segmented by hard threshold,and the accuracies of gray morphological filtering and soft morphological hybrid filtering are compared.Experiments show that the soft morphological hybrid filter is more suitable for multi-texture defect recognition of wet-pressed ferrite magnets.
作者 梁栋 顾杰宁 丁力 张陈 LIANG Dong;Gu Jiening;DING Li;ZHANG Chen(College of Mechanical Engineering,Jiangsu University of Technology,Changzhou 213001,Jiangsu,China)
出处 《陶瓷学报》 CAS 北大核心 2019年第5期675-680,共6页 Journal of Ceramics
基金 江苏省基础研究计划项目(BK20170135)
关键词 铁氧体湿压磁体 多尺度灰度变化 离散傅里叶变换 软形态混合滤波 wet-pressed ferrite magnet multiscale gray level change discrete Fourier transform soft morphological hybrid filter
作者简介 通信联系人:梁栋(1989-),男,硕士,助理实验师。
  • 相关文献

参考文献4

二级参考文献34

  • 1杨晓光,熊昌炳.裂纹慢扩展对陶瓷强度影响的分析方法[J].北京航空航天大学学报,1994,20(1):115-120. 被引量:1
  • 2孟国文,陈大明.陶瓷材料中裂纹起因及消除方法[J].材料导报,1995,9(2):40-41. 被引量:7
  • 3李宏,向遥,张卫,胡可成.基于直方图映射和分层的图像迁移算法研究[J].小型微型计算机系统,2007,28(6):1110-1114. 被引量:6
  • 4Rafael C. Gonzalez, Richard E.Woods, Steven L.Eddins. Digital Image Processing Using MATLAB[M]. Beijing: Publishing House of Electronics Industry, 2005: 120-123.
  • 5Land E H. Recent advances in retinex theory and some implications for cortical computations: color vision and the natural image[J]. Proceedings of the National Academy of Sciences of the United States of America, 1983, 80(16): 5163-5169.
  • 6Agaian S S, Panetta K A, Grigoryan A. Transform- based image enhancement algorithms with performance measure[J]. IEEE Trans. Imag. Proc., 2001, 10(3): 367-382.
  • 7Diallo M S, Schmitt D R . Noise reduction in interferometric fringe patterns with mean curvature diffusion[J]. Journal of Electronic Imaging, 2004, 13(4): 819-831.
  • 8Hashemi S, Kiani S, Noroozi N, et al. An image contrast enhancement method based on genetic algorithm [J]. Pattern Recognition Letters, 2010, 31(13): 1816-1824.
  • 9Marln D, Aquino A, Gegfindez-Arias M E, et al. A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invuriants-based features [J]. IEEE Transactions on Medical Imaging, 2011, 30(1): 146-158.
  • 10Agrawal S, Panda R. An Efficient Algorithm for Gray Level Image Enhancement Using Cuckoo Search [C]. Pro- ceedings of International Conference on Swarm, Evolutionary, and Memetic Computing. Springer, 2012: 82-89.

共引文献51

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部