期刊文献+

几乎CAP~*-子群与有限群的p-超可解性

Nearly CAP~*-Subgroups and p-Supersolvability of Finite Groups
在线阅读 下载PDF
导出
摘要 设G是有限群,子群H称为G的CAP^*-子群,如果H覆盖或者避开G的每个非-Frattini主因子。子群H称为G的几乎CAP^*-子群,如果存在G的次正规子群K使得HK=G,且H∩K是G的CAP^*-子群。本文应用G的某些素数幂阶几乎CAP^*-子群刻画有限群的p-超可解性,推广了相关文献的一些结果。 A subgroup H of a finite group G is called a CAP^*-subgroup of G,if H either covers or avoids every non-Frattini chief factor of G.A subgroup H of G is said to be a nearly CAP^*-subgroup of G if there exists a subnormal subgroup K of G such that HK=G and H∩K is a CAP^*-subgroup of G.This paper investigates the structure of G under the assumption that certain subgroups of prime power orders are nearly CAP^*-subgroups of G,and a series of known results are generalized.
作者 钟祥贵 孙悦 吴湘华 ZHONG Xianggui;SUN Yue;WU Xianghua(College of Mathematics and Statistics,Guangxi Normal University,Guilin Guangxi 541006,China)
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2019年第4期74-78,共5页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金(11261007) 广西自然科学基金(2014GXNSFAA118009)
关键词 有限群 几乎CAP^*-子群 P-超可解群 finite groups nearly CAP-subgroup p-supersolvable
作者简介 通信联系人:钟祥贵(1963-),男,湖南武冈人,广西师范大学教授。E-mail:xgzhong@gxnu.edu.cn。
  • 相关文献

参考文献2

二级参考文献19

  • 1张勤海,王丽芳.s-半置换子群对群构造的影响[J].数学学报(中文版),2005,48(1):81-88. 被引量:36
  • 2Doerk, K., Hawkes, T.: Finite Soluble Groups, Walter de Gruyter, Berlin-New York, 1992.
  • 3Gaschiitz, W.: Prefrattinigruppen. Arch. Math., 13, 418-426 (1962).
  • 4Ezquerro, L. M.: A contribution to the theory of finite supersolvable groups. Rend. Sere. Mat. Univ. Padova, 89, 161-170 (1993).
  • 5Fan, Y., Guo, X., Shum, K. P.: Remarks on two generalizations of normality of subgroups. Chinese J. Contemp. Math., 27, 139-146 (2006).
  • 6Guo, X., Wang, J. X., Shum, K. P.: On Semi-Cover-Avoiding Maximal subgroups and Solvability of Finite Groups. Comm. Algebra, 34, 3235-3244 (2006).
  • 7Guo, X., Guo, P., Shum, K. P.: On semi cover-avoiding subgroups of finite groups. J. Pure and Applied Algebra, 209, 151-158 (2007).
  • 8Guo, X. Y., Wang, L. L.: On finite groups with some semi cover-avoiding subgroups. Acta Mathematica Sinica, English Series, 23, 1689-1696 (2007).
  • 9Wang, Y. M.: C-normality of groups and its properties. J. Algebra, 180, 954-965 (1996).
  • 10Johnson, D. L.: A note on supersoluble groups. Can. J. Math., 23, 562 564 (1971).

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部