期刊文献+

基于DBSCAN的椭圆拟合算法的磁罗盘校正 被引量:9

Magnetometer correction based on improved algorithm of least square ellipse fitting
在线阅读 下载PDF
导出
摘要 随着智能机器技术的不断发展,微型化磁罗盘在惯性导航和姿态控制等领域被广泛应用。磁罗盘以地磁场作为测量对象,在测量过程中极易受到其他磁场干扰,极大影响了测量数据的准确性和可靠性。为了提高磁罗盘传感器的抗干扰能力,提出一种基于DBSCAN的椭圆拟合算法,对磁罗盘测量的原始数据进行二次处理,提取正确地磁场信息。根据磁罗盘在干扰磁场下的输出数据特征,采用椭圆拟合算法校准数据。同时,由于测量数据存在的奇异值对数据拟合影响较大,因此对数据采用DBSCAN和莱特算法进行预处理,保证拟合算法的可靠性。 With the continuous development of intelligent machine technology,miniaturized magnetic compass is widely used in the fields of inertial navigation and attitude control.Magnetic compass measures geomagnetic field values in real time and is highly susceptible to interference from other magnetic fields during the measurement process,which greatly affects the accuracy and reliability of the measured data.In order to improve the anti-interference ability of the magnetic compass sensor,this paper proposes an ellipse fitting algorithm based on DBSCAN,which performs secondary processing on the raw data measured by the magnetic compass to extract the correct geomagnetic information.According to the output data characteristics of the magnetic compass under the interference magnetic field,the ellipse fitting algorithm is used to calibrate the data.At the same time,because the singular value of the measured data has a great influence on the data fitting,the data is preprocessed by DBSCAN and Wright algorithm to ensure the reliability of the fitting algorithm.Finally,the magnetic compass data is corrected using the algorithm output to achieve interference suppression and improve the accuracy of the magnetic compass output.
作者 李海涛 曹纯 Li Haitao;Cao Chun(Beijing Institute of spaceflight test technology,Beijing 100074,China)
出处 《电子测量技术》 2019年第18期65-68,共4页 Electronic Measurement Technology
关键词 磁罗盘 数据校正 最小二乘椭圆拟合 DBSCAN magnetic compass data correction least square ellipse fitting algorithm DBSCAN
作者简介 李海涛,工学硕士,主要研究方向为仪器与测试技术等。E-mail:htli_buaa@163.com。
  • 相关文献

参考文献13

二级参考文献81

共引文献352

同被引文献61

引证文献9

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部