期刊文献+

基于小波分解和ARIMA模型的城际铁路客流预测 被引量:1

Research on prediction of passenger flow of intercity railway based on wavelet decomposition and ARIMA model
在线阅读 下载PDF
导出
摘要 针对城际铁路车站客流预测问题,文章采用离散小波分析方法对城际铁路车站原始日客流量数据进行小波分解;对分解得到的各层小波系数,利用AIC赤池信息准则进行ARIMA建模;利用训练得到的ARIMA模型进行预测未来一段时间客流数据的高频分量和低频分量,并对其进行小波重构,从而得到未来一段时间的预测客流数据;最后以广珠城际铁路某车站实际客流数据为例,对文章所提出的客流预测模型和客流预测算法进行了验证。实验结果表明,文章所提方法客流预测方法具有一定的预测精度。 In order to solve the problem of passenger flow prediction in intercity railway stations,this paper uses discrete wavelet analysis methods to decompose the original daily passenger flow data of intercity railway stations.For each layer of the wavelet coefficients obtained by decomposition,ARIMA modeling is carried out by using AIC Chichi information standard.The ARIMA model is used to predict the high frequency and low frequency components of passenger flow data for a certain period of time,and the wavelet reconstruction is performed to obtain the predicted passenger flow data for a certain period of time.Finally,taking the actual passenger flow data of a station of the Guangzhou-Zhuhai Intercity Railway as an example,the passenger flow prediction model and passenger flow prediction algorithm proposed in this paper are validated.The experimental results show that the passenger flow prediction method proposed in this paper has a certain degree of prediction accuracy.
作者 施玉欣 陈凌燕 梁颖怡 陈可欣 李锡钦 Shi Yuxin;Chen Lingyan;Liang Yingyi;Chen Kexin;Li Xiqin(School of Rail Transit Wuyi University,Jiangmen 529020,China)
出处 《江苏科技信息》 2019年第29期30-34,共5页 Jiangsu Science and Technology Information
基金 国家级大学生创新训练项目 项目编号:201811349036
关键词 城际铁路 客流预测 小波分析 ARIMA模型 intercity railway passenger flow prediction wavelet analysis ARIMA model
作者简介 施玉欣(1996—),女,广东江门人,本科生,研究方向:城际铁路车站客流预测方法。
  • 相关文献

参考文献4

二级参考文献23

共引文献126

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部