期刊文献+

图像描述生成方法研究文献综述 被引量:8

Research on image caption generation method based on deep learning:A literature review
在线阅读 下载PDF
导出
摘要 随着人工智能技术的兴起,图像特征提取技术和文本自动生成技术都得到了长足的进步,将两者结合的图像描述生成技术也越来越受到学术界和工业界的重视。图像到文本生成是一个综合性问题,涉及自然语言处理和计算机视觉等领域。本文介绍了图像描述生成技术的研究背景及国内外研究现状,概述了目前研究者评估生成图像描述质量的图像数据集,对现有模型进行了详细的分类概括:基于模板的图像描述生成方法、基于检索的图像描述生成方法、基于深度学习的图像描述生成方法。与此同时一并总结阐述了该领域面临的问题和挑战。 Image caption generation technology is used in many fields such as news communication,smart transportation,smart home and smart medical.Therefore,this technology has important academic and practical value.Image-to-text generation is a comprehensive problem involving areas such as natural language processing and computer vision.This paper introduces the research background of image caption generation technology and the research status at home and abroad,and summarizes the current image datasets that researchers evaluate to generate quality of the image caption.The existing models are classified and summarized in detail:template-based image caption generation method,retrieval-based image caption generation method and deep-learning-based image caption generation method.It also summarizes the problems and challenges which the field is facing.
作者 张姣 杨振宇 ZHANG Jiao;YANG Zhenyu(Qilu University of Technology(Shandong Academy of Sciences),Jinan 250353,China)
出处 《智能计算机与应用》 2019年第5期45-49,共5页 Intelligent Computer and Applications
基金 山东省自然科学基金(ZR2017LF021) 山东省重点研究发展计划(2017XCGC0605)
关键词 图像描述 文本生成 特征提取 计算机视觉 image caption text generation feature extraction computer vision
作者简介 张姣(1993-),女,硕士研究生,主要研究方向:深度学习、大数据智能制造与分析;杨振宇(1980-),男,博士,副教授,主要研究方向:深度学习、强化学习、人工智能与大数据。
  • 相关文献

参考文献2

二级参考文献40

  • 1Makadia A, Pavlovic V, Kttmar S.A New Baseline for Image Annotation[C]//Proceedings of European Conference on Com- puter Vision, 2008,5304 .. 316-329.
  • 2Boll S.Share It,reveal It,reuse It,and push multimedia into a new decade[J].IEEE Multimedia,2007,14(4) : 14-19.
  • 3Tsai C,Hung C.Automatically annotating images with keywords: a review of image annotation systems[J].Recent Patents on Com- puter Science, 2008,1 ( 1 ) : 55-68.
  • 4Hanbury A.A survey of methods for image annotation[J].Joumal of Visual Languages and Computing,2008,19(5):617-627.
  • 5Hare J, Lewis P, Enser P, et al.Mind the gap: another look at the problem of the semantic gap in image retrieval[C]//Proeeedings of SPIE,2006,6073:75-86.
  • 6Russell B C, Torralba A, Murphy K P, et al.Labelme: a database and web-based tool for image annotation[J].International Journal of Computer Vision, 2008,77:157-173.
  • 7yon Ahn L, Dabbish L.Labeling images with a computer game[C]// Proceedings of the SIGCHI Conference on Human factors in Com- puting Systems, 2004: 319-326.
  • 8Jeon J, Lavrenko V, Manmatha R.Automatic image annotation and retrieval using cross-media relevance models[C]//Proceedings of ACM SIGIR Conference on Research and Development in In- formaion Retrieval,2003 : 119-126.
  • 9Jeon L, Lavrenko V, Manmatha R, et al.A model for learning the semantics of pictures[C]//Annual Conference on Neural Informa- tion Processing Systems, 2003.
  • 10Feng S L, Manmatha R, Lavrenko V.Multiple Bernoulli relevance models for image and video annotation[C]//Proceedings of IEEE Conference on Computer Vision and Pattem Recognition, 2004, 2 : 1002-1009.

共引文献20

同被引文献33

引证文献8

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部