期刊文献+

基于独立成分分析的fMRI数据分类 被引量:3

CLASSIFICATION OF FMRI DATA BASED ON INDEPENDENT COMPONENT ANALYSIS
在线阅读 下载PDF
导出
摘要 针对功能磁共振成像(functional Magnetic Resonance Imaging,fMRI)数据分类方法中多余的预测变量和实验噪声等导致无法准确提取数据的有效特征,影响分类准确率的问题,提出将独立成分分析(Independent Component Analysis,ICA)算法与Adaboost数据分类方法相结合用于分析fMRI数据.利用ICA算法通过线性变换将体素信息分解为统计独立的源信号的线性组合;不断更新分离矩阵提取脑组织边缘变化的特征信息;利用ICA算法得到的特征信息训练Adaboost分类器.实验结果显示该方法得到的平均分类准确率达到84.72%,表明其有助于对大脑中形成的视觉图像信息进行分类,为解码fMRI数据提供了一种方法. Redundant predictive variables and experimental noise in functional magnetic resonance imaging(fMRI)data classification methods lead to inaccurate extraction of effective features of data,which affects the classification accuracy.This paper proposed an independent component analysis(ICA)algorithm combined with Adaboost data classification method to analyze fMRI data.Using ICA algorithm,voxel information was decomposed into a linear combination of statistically independent source signals through linear transformation.Then the separation matrix was updated continuously to extract the feature information of brain tissue edge changes.Adaboost classifier was trained with the feature information obtained by ICA algorithm.The experimental results show that the average classification accuracy of the method is 84.72%,and it is helpful to classify the visual image information formed in the brain and provides a method for decoding fMRI data.
作者 张芳芳 李楠 Zhang Fangfang;Li Nan(College of Information and Computer Science,Taiyuan University of Technology,Taiyuan 030024,Shanxi,China)
出处 《计算机应用与软件》 北大核心 2019年第11期107-111,共5页 Computer Applications and Software
关键词 功能磁共振成像 独立成分分析 ADABOOST 特征提取 机器学习 fMRI ICA Adaboost Feature extraction Machine learning
作者简介 张芳芳,硕士生,主研领域:磁共振图像处理,模式识别;李楠,硕士生。
  • 相关文献

参考文献7

二级参考文献35

  • 1武振华,唐焕文,唐一源,潘丽丽.独立成分分析在生物医学信号处理中的应用[J].国外医学(生物医学工程分册),2004,27(4):211-214. 被引量:8
  • 2仇德辉.数理情感学[M].长沙:湖南人民出版社.2001.
  • 3Pereira F, Mitchell T, Botvinick M. Machine learning classifiers and fMRI: A tutorial overview[J]. Neuro Image, 2009, 45(1):S199-S209.
  • 4Wang Xuerui, Mitchell T M, Hutchinson R. Using machine learning to detect cognitive states across multiple subjects [OL]. E2012 05 211. http://eiteseerx, ist. psu. edu/viewdoc/ summary?doi: 10.1. 1. 135. 6678.
  • 5Norman K A, Polyn S M, Detre G J, et al. Beyond mind reading: multi-voxel pattern analysis of fMRI data [J]. Trends in Cognitive Sciences, 2006, 10(9): 424-430.
  • 6Ramish 3. I.earning common features from fMRI data of nmhiple subjects [OL]. [2012-05-21]. http://eiteseerx, ist. psu. edu/viewdoc/summary?doi : 10.1.1.122. 4651.
  • 7Cox D D, Savoy R L. Functional magnetic resonance imaging ( fMRl)"brain reading": Detecting and classifying distributed patterns of fMRI activity in human visual cortex [J]. Neurolmage, 2003. 19(2): 261-270.
  • 8Kuncheva I, I, Rodriguez J J. Classifier ensembles for fMRI data analysis: An experiment [J]. Magnetic Resonance Imaging. 2010. 28(4): 583-593.
  • 9Girindrod C M, Bilenko N Y, Myers E B. The role of the left inferior frontal gyrus in implicit semantic competition and selection: An evem related fMRI study [J]. Brain Research, 2008. 1229(10): 167-178.
  • 10相沽.启发式问题解决认知神经机制及fMRI数据分析方法研究[D].太原:太原理工大学,2010.

共引文献41

同被引文献15

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部