期刊文献+

基于大数据的人体行为特征方向估计模型仿真 被引量:1

Simulation of Human Body Behavior Feature Direction Estimation Model Based on Big Data
在线阅读 下载PDF
导出
摘要 由于人体运动过程中行为的多样性以及复杂性,导致人体行为特征方向估计模型的效果不理想、准确率偏低等问题。为此,构建基于大数据的人体行为特征方向估计模型。通过人体运动图像中的深度信息分别计算出不同像素点在水平方向和垂直方向的梯度值,再计算不同像素点与邻域像素点之间的差值,获取人体行为特征。对图像中的关键参数进行自适应处理,利用遗传算法对关键参数进行寻优,并构建基于大数据的人体行为特征方向估计模型。实验结果表明,与传统的人体行为特征方向估计模型相比,所提估计模型在人体行为特征方向估计效果以及准确率方面都有较大幅度的提升。 Due to the diversity and complexity of behavior during human motion,the estimation model of human behavior features is not ideal and the accuracy is low.Therefore,a model to estimate human behavior feature direction based on big data was constructed.The gradient values of different pixel points on the horizontal direction and the vertical direction are respectively computed by the depth information in human motion image,and the difference between different pixel points and adjacent pixel points was calculated to obtain the human behavior feature.The key parameters in image were adaptively processed.Finally,the genetic algorithm was used to optimize key parameters,and the estimation model of human behavior feature direction based on big data was constructed.Following conclusion can be drawn from Simulation results show that,compared with the traditional estimation model of human behavior feature direction,the proposed estimation model has a great improvement in the estimation effect and accuracy of human behavior feature.
作者 刘静 LIU Jing(Youth College of Politics Science of Inner Mongolia Normal University,Hohhot Inner Mongolia 010051,China)
出处 《计算机仿真》 北大核心 2019年第9期422-425,451,共5页 Computer Simulation
关键词 大数据 人体行为 特征方向 估计模型 Big data Human behavior Feature direction Estimation model
作者简介 刘静(1981-),女(满族),内蒙古乌兰察布人,硕士,讲师,研究方向:计算机应用。
  • 相关文献

参考文献12

二级参考文献204

共引文献133

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部