期刊文献+

三阶随机张量高斯分布

The third-order random tensor Gaussian distribution
在线阅读 下载PDF
导出
摘要 研究了随机变量和随机矩阵的高斯分布的密度函数和特征函数。首先,定义了张量的特征函数和随机张量的高斯分布形式以及标准随机张量高斯分布的密度函数;然后,通过张量的内积,计算出标准随机张量高斯分布的特征函数;最后,通过张量积和张量的矩阵化,得到三阶随机张量的特征函数和密度函数。 In this paper,we studied the density function and the characteristic function of the random vector and random matrix Gaussian distribution.We firstly defined the characteristic function of the random tensor,its Gaussian distribution and the density function of the standard random tensor.Then,we calculated the characteristic function of the standard random tensor Gaussian distribution through the inner product of the random tensor.Finally,we obtained the density function and the characteristic function of the third-order random tensor by tensor product and matricization.
作者 何玲玲 林泽榕 张子明 徐常青 HE Lingling;LIN Zerong;ZHANG Ziming;XU Changqing(School of Mathematics and Physics,SUST,Suzhou 215009,China)
出处 《苏州科技大学学报(自然科学版)》 CAS 2019年第3期15-19,共5页 Journal of Suzhou University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(11171373) 苏州科技大学研究生科研创新项目
关键词 随机张量 高斯分布 特征函数 密度函数 random tensor Gaussian distribution characteristic function density function
作者简介 何玲玲(1991-),女,安徽安庆人,硕士研究生,研究方向:应用统计学;通信作者:徐常青(1966-),男,博士,教授,硕士生导师,E-mail:cqxurichard@mail.usts.edu.cn。
  • 相关文献

参考文献4

二级参考文献59

  • 1Weickert J, Hagen H. Visualization and Processing of Tensor Fields[M]. Berlin,Germany:Springer Verlag,2006.
  • 2Knutsson H, Westin C F,Andersson M. Representing local struc- ture using tensors Ⅱ[ C]//Proceedings of the 17th Scandinavian Conference on Image Analysis. Ystad, Sweden : Springer-Verlag, 2011:545-556.
  • 3Liu H,Wei Z. An edge-adaptive structure tensor kernel regres- sion for image interpolation[ C ]// Proceedings of the 2nd Inter- national Conference on Future Computer and Communication. Wuhan, China: IEEE ,2010:681-685.
  • 4Burgeth B, Didas S, Weickert J. A general structure tensor con- cept and coherence-enhmming diffusion filtering for matrix fields [M]//Laidlaw D, Weickert I. Visualization and Processing of Tensor Fields. Berlin Heidelberg: Springer,2009:305-323.
  • 5Basser P J,Mattiello J,Lebihan D. MR diffusion tensor spectros- copy and imaging [ J ]. Biophysical Journal, 1994,66 ( 1 ) : 259- 267.
  • 6Westin C F,Maier S E,Mamata H,et al. Processing and visual- ization for diffusion tensor MRI [ J ]. Medical Image Analysis, 2002,6(2) :93-108.
  • 7Bigun J, Granlund G H. Optimal orientation detection of linear symmetry [ C ]//Proceedings of the IEEE First International Con- ference on Computer Vision. London,Great Britain:IEEE,1987: 433-438.
  • 8Witalis E A. Incompressible steady flow with tensor conductivity leaving a transverse magnetic field[ J ]. Journal of Nuclear Energy. Part C, Plasma Physics, Accelerators, Thermonuclear Research, 1966,8(2) :137-143.
  • 9Boring E, Pang A. Interactive deformations from tensor fields [ C]//Proceedings of the Conference on Visualization' 98. Los Alamitos : CA USA : IEEE, 1998:297-304.
  • 10Li X L,Li F Z. A model of data reduction based on tensor field [ C ]// WRI Global Congress on Intelligent Systems. Xiamen, China : IEEE, 2009 : 356-359.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部