期刊文献+

基于Jetson TX1的目标检测系统 被引量:3

Object detection system based on Jetson TX1
在线阅读 下载PDF
导出
摘要 针对目标检测算法在实际应用中速度仍需提高的问题,提出一种改进的YOLOv3算法.通过将多层次特征金字塔网络嵌入到YOLOv3算法中的DarkNet-53网络,解决了由实际检测对象尺度差异引起的误差问题,既增加了输出特征的尺度,又加深了网络层数;并针对损失函数中的激活函数零均值、梯度消失等问题,提出了一种新的激活函数.实验结果表明,改进的YOLOv3算法可以更好地对多尺度目标进行检测,提高了检测速度和准确性,并在硬件上实现时具有较为高效的性能表现. Aiming at the problem that the object detection algorithm still needs to be accelerated in practical application,an improved YOLOv3 algorithm was proposed.Through embedding the multi-level feature pyramid network into the DarkNet-53 network of YOLOv3 algorithm,the error problem caused by the scale difference of actual detection objects was solved.The as-proposed algorithm not only increased the scale of output features,but also made the number of network layers deepened.Concerning the problems of zero mean of activation function and vanishing gradient in loss function,a novel activation function was proposed.The results show that the improved YOLOv3 algorithm can detect the multi-scale objects much better,improve the detection speed and accuracy,and exhibit a more efficient performance for hardware implementation.
作者 葛雯 张雯婷 孙旭泽 GE Wen;ZHANG Wen-ting;SUN Xu-ze(School of Electronics and Information Engineering,Shenyang Aerospace University,Shenyang 110136,China;Information and Telecommunication Branch,State Grid Liaoyang Electric Power Supply Company,Liaoyang 111000,China)
出处 《沈阳工业大学学报》 EI CAS 北大核心 2019年第5期539-543,共5页 Journal of Shenyang University of Technology
基金 辽宁省自然科学基金资助项目(201602556)
关键词 目标检测 YOLOv3算法 多层次特征金字塔 尺度差异 激活函数 零均值 梯度消失 多尺度目标 object detection YOLOv3 algorithm multi-level feature pyramid scale difference activation function zero mean gradient vanishing multi-scale object
作者简介 葛雯(1972-),女,上海人,副教授,博士,主要从事图像处理、模式识别等方面的研究.
  • 相关文献

参考文献5

二级参考文献139

  • 1Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2) 91 110.
  • 2Dalai N, Triggs B. Histograms of oriented gradients for human detection[C]//Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society Conference on. San Diego, USA: IEEE, 2005, 1 886-893.
  • 3Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786) : 504-507.
  • 4Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the catrs visual cortex[J]. The Journal of Physiology, 1962, 160(1): 106-154.
  • 5Fukushima K, Miyake S. Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in posi- tion[J]. Pattern Recognition, 1982, 15(6): 455-469.
  • 6Ruck D W, Rogers S K, Kabrisky M. Feature selection using a multilayer perceptron[J]. Journal of Neural Network Com- puting, 1990, 2(2): 40-48.
  • 7Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986,3231 533 538.
  • 8LeCun Y, Denker J S, Henderson D, et al. Handwritten digit recognition with a back-propagation network[C]//Advances in Neural Information Processing Systems. Colorado, USA Is. n. ], 1990: 396-404.
  • 9LeCun Y, Cortes C. MNIST handwritten digit database[EB/OL], http//yann, lecun, com/exdb/mnist, 2010.
  • 10Waibe[ A, Hanazawa T, Hinton G, et al. Phoneme recognition using time-delay neural networks[J]. Acoustics, Speech and Signal Processing, IEEF. Transactions on, 1989, 37(3): 328-339.

共引文献1191

同被引文献16

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部