期刊文献+

基于贝叶斯网络的学生成绩预测 被引量:18

Predicting of students′ achievement based on bayesian network
在线阅读 下载PDF
导出
摘要 以山东理工大学数学与统计学院统计学专业2015级学生的7门主干学科成绩作为数据样本,通过贝叶斯网络的结构学习直观地得到了7门学科之间的关联性;基于贝叶斯网络拓扑结构进行了网络的参数学习,得到了各学科成绩的条件概率;最后利用贝叶斯网络推理的联合树算法给出了学生的成绩预测,并用实例证明了贝叶斯网络成绩预测的可行性。 In this paper,we take scores of seven major courses from class 2015 students majoring in statistics in School of Mathematics and Statistics at Shandong University of Technology as the data sample.We intuitively obtain the correlation between various disciplines through the structural learning of the Bayesian network.Then,we also conduct Bayesian network parameter learning based on the Bayesian network topology and obtained conditional probabilities between achievements of various disciplines.Finally,we used the joint tree algorithm of Bayesian network reasoning to predict students′performance.The feasibility of applying Bayesian network to predict student achievement is proved by an example.
作者 刘艳杰 李霞 LIU Yanjie;LI Xia(School of Mathematics and Statistics,Shandong University of Technology,Zibo 255049,China)
出处 《山东理工大学学报(自然科学版)》 CAS 2019年第5期75-78,共4页 Journal of Shandong University of Technology:Natural Science Edition
关键词 贝叶斯网络 K2算法 联合树算法 Bayesian network K2 algorithm joint tree algorithm
作者简介 第一作者:刘艳杰,女,1471205869@qq.com;通信作者:李霞,女,18765330861@163.com
  • 相关文献

参考文献12

二级参考文献124

  • 1王双成,苑森淼.具有丢失数据的贝叶斯网络结构学习研究[J].软件学报,2004,15(7):1042-1048. 被引量:62
  • 2朱永利,王艳,耿兰芹,苏丹.基于贝叶斯网络的电网故障诊断[J].电力自动化设备,2007,27(7):33-37. 被引量:17
  • 3Pearl J . Probabilistic Reasoning in Intelligent Systems : Net works of Plausible Inference. 2nd ed. San Mateo, CA: Morgan Kaufmann, 1991
  • 4Kohlas J, Anrig R, Haenni R. Model-based diagnosis and probabilistie assumption based reasoning[J]. Artificial Intelligence, 1998,104(1) : 71-106
  • 5http://www.cs. ubc. ca/-murphyk/Software/BNT/bnt, html
  • 6Retiter R. A theory of diagnosis from first principles[J]. Artificial Intelligence, 1987,32 (1) : 57-95
  • 7Cooper G F, Herskovits E. A Bayesian Method for the Induction of Probabilistic Networks Form Data[J]. Machine Learning, 1992, 9(4): 309-348.
  • 8Heckerman D, Geiger D, Chickering D M. Learning Bayesian Networks: The Combination of Knowledge and Statistical Data[J]. Machine Learning, 1995, 20(3): 197-243.
  • 9Mellers B A, McGraw A P. How to improve Bayesian reasoning: A comment on Gigerenzer and Hofrage(1995). Psychological Review, 1999, 106(2): 417-424
  • 10Eddy D .M. Probabilistic reasoning in clinic medicine: Problems and opportunities. In: Kahneman D, Slovic P, Tverskey A. ed. Judgement under uncertainty: Heuristics and biases. Cambridge University Press, 1982. 249-267

共引文献149

同被引文献127

引证文献18

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部