期刊文献+

碳量子点负载TiO_2纳米棒阵列的光电化学性能 被引量:4

Photoelectrochemical Properties of TiO_2 Nanorod Arrays Loaded with Carbon Quantum Dots
在线阅读 下载PDF
导出
摘要 研究了碳量子点负载的Ti O2纳米棒阵列光阳极的光电化学过程和光催化行为。实验发现碳量子点的引入使Ti O2纳米棒阵列在可见光区域的吸收强度增强,对可见光的响应电流提高3倍,光照下的开路电位增加了2.5%,光生载流子的转移和传输能力得到相应提高。光阳极对亚甲基蓝的降解特性显示,碳量子点的引入使Ti O2纳米棒在可见光照射下的催化效率由25%提高到33%。利用电化学交流阻抗谱(EIS)、MottSchottky曲线讨论了光影响下的电荷运动过程,表明Ti O2纳米棒阵列负载碳量子点后的电荷转移电阻减小,电子寿命增加;碳量子点的负载使Ti O2纳米棒的平带电位负移,导带位置提高,电子的还原能力增强。 The photoelectrochemical ( PEC) performance and photocatalytic activity of TiO2 nanorod arrays ( NRs) loaded with carbon quantum dots ( CQDs) were investigated. In comparison with TiO2 NRs, the absorption ability of TiO2 NRs loaded with CQDs was enhanced. The transient photocurrent and open-circuit potential under visible light illumination were increased of 300% and 2 . 5%, re-spectively. After loaded with CQDs, the photocatalytic degradation efficiency of methylene blue ( MB) under visible light illumination was increased from 25% to 33%. The electrochemical imped-ance spectra ( EIS) and Mott-Schottky plots were measured to investigate the charge movement under the visible light illumination. The results suggest that the charge transfer resistance is reduced and the electron lifetime is increased for TiO2 NRs loaded with CQDs. The loading of CQDs can induce the flat-band potential negative shift and the conduction band position raise, resulting in the en-hancement of electron reduction properties.
出处 《发光学报》 EI CAS CSCD 北大核心 2015年第8期898-905,共8页 Chinese Journal of Luminescence
基金 863国家高技术研究发展计划(2013AA014201) 国家重大科学仪器设备开发专项(2014YQ120351) 天津市自然科学基金(11JCYBJC00300 14JCZDJC31200 15JCYBJC16700 15JCYBJC16800) 天津市科技计划国际合作项目(14RCGHGX00872)资助
关键词 碳量子点 TiO2纳米棒阵列 平带电位 光催化 arbon quantum dots TiO2 nanorod arrays flat-band potential photocatalysis
  • 相关文献

参考文献13

  • 1Xiuwen Cheng,Huiling Liu,Qinghua Chen,Junjing Li,Pu Wang.Preparation of graphene film decorated TiO 2 nano-tube array photoelectrode and its enhanced visible light photocatalytic mechanism[J]. Carbon . 2014
  • 2Le Yu,Zhuyi Wang,Liyi Shi,Shuai Yuan,Yin Zhao,Jianhui Fang,Wei Deng.Photoelectrocatalytic performance of TiO 2 nanoparticles incorporated TiO 2 nanotube arrays[J]. Applied Catalysis B, Environmental . 2011
  • 3Chong Chen,Yi Xie,Ghafar Ali,Seung Hwa Yoo,Sung Oh Cho.Improved conversion efficiency of CdS quantum dots-sensitizedTiO<SUB>2</SUB> nanotube array using ZnO energy barrier layer[J]. Nanotechnology . 2011 (1)
  • 4Hang Yu,Hengchao Zhang,Hui Huang.ZnO/carbon quantum dots nanocomposites: one-step fabrication and superior photocatalytic ability for toxic gas degradation under visible light at room temperature. NEW JOURNAL OF CHEMISTRY . 2012
  • 5Huang Qiang,Kang Feng,Liu Hao,et al.Highly aligned Cu2O/CuO/TiO2 core/shell nanowire arrays as photocathodes for water photoelectrolysis. Journal of Materials . 2013
  • 6Trevisan R,Rodenas P,Gonzalez-Pedro V, et al.Harnessing Infrared Photons for Photoelectrochemical Hydrogen Generation. APbS Quantum Dot Based "Quasi-Artificial Leaf. The Journal of Physical Chemistry Letters . 2012
  • 7Zhang X,Wang F,Huang H, et al.Carbon quantum dot sensitized TiO2nanotube arraysforphotoelectrochemical hydrogen generation under visible light. Nanoscale . 2013
  • 8Wang, Gongming,Wang, Hanyu,Ling, Yichuan,Tang, Yuechao,Yang, Xunyu,Fitzmorris, Robert C.,Wang, Changchun,Zhang, Jin Z.,Li, Yat.Hydrogen-treated TiO 2 nanowire arrays for photoelectrochemical water splitting. Nano Letters . 2011
  • 9Lixia Sang,Huanyue Tan,Xiaomin Zhang,Yuting Wu,Chongfang Ma,Clemens Burda.Effect of Quantum Dot Deposition on the Interfacial Flatband Potential, Depletion Layer in TiO2 Nanotube Electrodes, and Resulting H2 Generation Rates. Journal of Physical Chemistry C . 2012
  • 10Lin, Yangming,Li, Danzhen,Hu, Junhua,Xiao, Guangcan,Wang, Jinxiu,Li, Wenjuan,Fu, Xianzhi.Highly efficient photocatalytic degradation of organic pollutants by PANI-modified TiO 2 composite. Journal of Physical Chemistry C . 2012

同被引文献25

  • 1孙英祥,孙相宝,何志伟,赵增典,刘然升,娄湘琴.桃花水热法一步合成水溶性荧光碳点[J].材料科学与工程学报,2014,32(3):393-397. 被引量:10
  • 2Fuentes A, Vázquez-Gutiérrez J L, Pérez-Gago M B, Vonasek E, Nitin N, Barrett D M. J. Food Eng., 2014,133:16-22.
  • 3Scandurra G, Tripodi G, Verzera A. J. Food Eng., 2013,119(4):738-743.
  • 4Margo C, Katrib J, Nadi M, Rouane A. Physiol. Meas., 2013,34(4):391-405.
  • 5Zhang D M, Jiang J, Chen J Y, Zhang Q, Liu Y L, Yao Y, Li S, Liu G L, Liu Q J. Biosens. Bioelectron., 2015,70:81-88.
  • 6Hoja J, Lentka G. Sensor. Actuat. A, 2010,163(1):191-197.
  • 7Hamed A, Tisserand E, Schweitzer P, Berviller Y. Sensor. Actuat. A, 2012,182:82-88.
  • 8M'Peko J C, Reis D L S, De Souza J E, Caires A R L. Int. J. Hydrogen Energ., 2013,38(22):9355-9359.
  • 9Asadauskas S J, Grigucevi[AK?]ienê A, Leinartas K, Bra?inskiené D. Tribol. Int., 2011,44(5):557-564.
  • 10Chabowski K, Piasecki T, Dzierka A, Nitsch K. Metrol. Meas. Syst., 2015,22(1):13-24.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部