期刊文献+

壳层相关的CdSe核/壳量子点发光的热稳定性 被引量:6

Shell-dependent Thermal Stability of CdSe Core /shell Quantum Dot Photoluminescence
在线阅读 下载PDF
导出
摘要 测量了CdSe/ZnS(3 ML)核/壳结构及CdSe/CdS(3 ML)/ZnCdS(1 ML)/ZnS(2 ML)核/多壳层结构量子点在80~460 K范围内的光致发光光谱,研究了壳层结构对CdSe量子点发光热稳定性的影响。详细地分析了CdSe量子点的发光峰位能量、线宽和积分强度与温度之间的关系,发现CdSe量子点的发光热稳定性依赖于壳层结构。CdS/ZnCdS/ZnS多壳层结构包覆CdSe量子点在低温和高温部分的热激活能均大于ZnS壳层包覆的CdSe量子点,具有更好的发光热稳定性。此外,在300-460-300 K加热-冷却循环实验中,CdS/ZnCdS/ZnS多壳层结构包覆CdSe量子点的发光强度永久性损失更少,热抵御能力更强。 The photoluminescence ( PL) spectra of CdSe / ZnS (3 ML) core / shell quantum dots (QDs) and CdSe / CdS (3 ML) / ZnCdS (1 ML) / ZnS (2 ML) core / multishell QDs were measured in the temperature range from 80 to 460 K by steady-state PL spectroscopy. The temperature de-pendence of PL energy, linewidth, and intensity for CdSe QDs was investigated. It is found that the thermal stability of CdSe QD emissions is significantly dependent on the shell structure. The thermal activation energy of CdSe / CdS / ZnCdS / ZnS core / multishell QDs is higher than that of CdSe / ZnS core / shell QDs. Furthermore, the stability of CdSe QDs at high temperature was also examined through heating-cooling cycling experiments. The permanent loss of PL intensity for CdSe / CdS /ZnCdS / ZnS core / multishell QDs is smaller than that of CdSe / ZnS core / shell QDs.
出处 《发光学报》 EI CAS CSCD 北大核心 2014年第9期1051-1057,共7页 Chinese Journal of Luminescence
基金 国家自然科学基金(21371071) 吉林省科技发展计划(20120344)资助项目
关键词 CDSE 量子点 纳米晶 温度依赖的光致发光 CdSe quantum dots nanocrystals temperature-dependent photoluminescence spectroscopy
  • 相关文献

参考文献3

二级参考文献39

  • 1Ueng H Y, Hwang H L. The defect structure of CuInS2 part I :Intrinsic defects [J]. J. Phys. Chem. Solids, 1989, 50(12) :1297-1305.
  • 2Nose K, Omata T, Otsuka-Yao-Matsuo S. Colloidal synthesis of ternary copper indium diselenide quantum dots and their optical properties [J]. J. Phys. Chem. C, 2009, 113(9):3455-3460.
  • 3Nam D, Song W, Yang H. Noninjection, one-pot synthesis of Cu-deficient CulnS2/ZnS core/shell quantum dots and their fluorescent properties [ J ]. J. Colloid Interface Sci. , 2011, 361 (2) :491-496.
  • 4Tan Z, Zhang Y, Xie C, et al. Employing heavy metal-free colloidal quantum dots in solution-processed white light-emit- ting diodes [J]. Nano Lett. , 2011, 11(2) :329-332.
  • 5Li B, Xie Y, Huang J X, et al. Synthesis by a solvothermal route and characterization of CulnSe2 nanowhiskers and nano- particles [ J]. Adv. Mater. , 1999, 11 (17) : 1456-1459.
  • 6Castro S L, Bailey S G, Raffaelle R P, et al. Synthesis and characterization of colloidal CuInS2 nanoparticles from a molecular single-source precursor [ J]. J. Phys. Chem. B, 2004, 108 (33) : 12429-12434.
  • 7Castro S L, Bailey S G, Raffaelle R P, et al. Nanocrystalline chalcopyrite materials (CuInS: and CuInSe: ) via low-tem- perature pyrolysis of molecular single-source precursors [ J]. Chem. Mater. , 2003, 15 (16) :3142-3147.
  • 8Nairn J J, Shapiro P J, Twamley B, et al. Preparation of uhrafine chalcopyrite nanopartieles via the photochemical decom- position of molecular single-source precursors [ J ]. Nano Lett. , 2006, 6 (6) : 1218-1223.
  • 9Norako M E, Franzman M A, Brutchey R L. Growth kinetics of monodisperse Cu-In-S nanocrystals using a dialkyl disul- fide sulfur source [ J ]. Chem. Mater. , 2009, 21 (18) :42994304.
  • 10Zhong H Z, Zhou Y, Ye M F, et al. Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals [ J ]. Chem. Mater. , 2008, 20 (20) :6434-6443.

共引文献12

同被引文献65

  • 1李其扬,刘丽炜,胡思怡,张凤东,王玥,苗馨卉,谭勇,张喜和.CdSe/CdS/ZnS量子点光纤的增益研究[J].发光学报,2013,34(7):894-899. 被引量:1
  • 2赵慧凯,杨昆,王益林,李怀美.CdSe量子点膨润土复合材料的制备与表征[J].发光学报,2014,35(4):437-441. 被引量:1
  • 3刘弘伟,LASKAR IR,黄静萍,陈登铭.硒化镉发光量子点的制备及其在有机发光器件中的应用(英文)[J].发光学报,2005,26(3):321-326. 被引量:9
  • 4王璐,王德平,黄文旵.Ⅱ~Ⅵ族半导体量子点合成方法的研究进展[J].材料导报,2005,19(F05):12-14. 被引量:1
  • 5PENG X G. Band Gap and Composition Engineering on a Nanocrystal(BCEN) in solution[ J]. Acc. Chem. Res. ,2010, 43 : 1387-1395.
  • 6YU W W, QU L H, PENG X G, et al.. Experimental determination of the extinction coefficient of CdTe, CdSe and CdS nanoerystals[ J]. Chem. Mater. ,2003,15:2854-2860.
  • 7FRANCESCHETTI A, AN JM, ZUNGER A. Impact ionization can explain carrier multiplication in PbSe quantum dots [ J ]. Nano Lett. ,2006,6:2191-2195.
  • 8SAMBUR J B, NOVET T, PARKINSON B. A multipleexciton collection in a sensitized photovoltaic system [ J ]. Science, 2010,330:63-66.
  • 9YU X Y,LIAO J Y,SU C Y,et al.. Dynamic study of highly efficient CdS/CdSe quantum dot-sensitized solar cells fabrica- ted by electrodeposition[ J]. ACS Nano ,2011,5 :9494-9500.
  • 10SANTRA P K,KAMAT P V. Mn-doped quantum dot sensitized solar cells:a strategy to boost efficiency over 5% [ J]. J. Am. Chem. Soc. ,2012,134:2508-2511.

引证文献6

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部