期刊文献+

Sustained Akt signaling in articular chondrocytes causes osteoarthritis via oxidative stress-induced senescence in mice 被引量:11

Sustained Akt signaling in articular chondrocytes causes osteoarthritis via oxidative stress-induced senescence in mice
在线阅读 下载PDF
导出
摘要 Osteoarthritis(OA) is an age-related disorder that is strongly associated with chondrocyte senescence. The causal link between disruptive PTEN/Akt signaling and chondrocyte senescence and the underlying mechanism are unclear. In this study, we found activated Akt signaling in human OA cartilage as well as in a mouse OA model with surgical destabilization of the medial meniscus.Genetic mouse models mimicking sustained Akt signaling in articular chondrocytes via PTEN deficiency driven by either Col2a1-Cre or Col2a1-Cre^(ERT2) developed OA, whereas restriction of Akt signaling reversed the OA phenotypes in PTEN-deficient mice.Mechanistically, prolonged activation of Akt signaling caused an accumulation of reactive oxygen species and triggered chondrocyte senescence as well as a senescence-associated secretory phenotype, whereas chronic administration of the antioxidant N-acetylcysteine suppressed chondrocyte senescence and mitigated OA progression in PTEN-deficient mice. Therefore,inhibition of Akt signaling by PTEN is required for the maintenance of articular cartilage. Disrupted Akt signaling in articular chondrocytes triggers oxidative stress-induced chondrocyte senescence and causes OA. Osteoarthritis(OA) is an age-related disorder that is strongly associated with chondrocyte senescence. The causal link between disruptive PTEN/Akt signaling and chondrocyte senescence and the underlying mechanism are unclear. In this study, we found activated Akt signaling in human OA cartilage as well as in a mouse OA model with surgical destabilization of the medial meniscus.Genetic mouse models mimicking sustained Akt signaling in articular chondrocytes via PTEN deficiency driven by either Col2a1-Cre or Col2a1-CreERT2 developed OA, whereas restriction of Akt signaling reversed the OA phenotypes in PTEN-deficient mice.Mechanistically, prolonged activation of Akt signaling caused an accumulation of reactive oxygen species and triggered chondrocyte senescence as well as a senescence-associated secretory phenotype, whereas chronic administration of the antioxidant N-acetylcysteine suppressed chondrocyte senescence and mitigated OA progression in PTEN-deficient mice. Therefore,inhibition of Akt signaling by PTEN is required for the maintenance of articular cartilage. Disrupted Akt signaling in articular chondrocytes triggers oxidative stress-induced chondrocyte senescence and causes OA.
出处 《Bone Research》 SCIE CAS CSCD 2019年第3期318-326,共9页 骨研究(英文版)
基金 supported by grants from the State Key Program of National Natural Science of China (31630093) the National Natural Science Foundation of China (31571512, 31871476, and 81241062) the Beijing Nova Program (Z161100004916146) the National Basic Research Program of China (2012CB966904)
作者简介 These authors contributed equally: Jing Xie, Jingting Lin;Correspondence: Guan Yang,yangguan@bmi.ac.cn;Correspondence: Xiao Yang,yangx@bmi.ac.cn.
  • 相关文献

参考文献2

共引文献30

同被引文献59

引证文献11

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部